
Supplemental Information for: Metastable prepores in tension-free lipid bilayers

Christina L. Ting,1 Neha Awasthi,2,3 Marcus Müller,4∗ and Jochen S. Hub2,3∗
1Sandia National Laboratories, Albuquerque, NM 87185, USA

2University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
3Göttingen Center for Molecular Biosciences, 37077 Göttingen, Germany

4University of Goettingen, Institute for Theoretical Physics, 37077 Göttingen, Germany

I. ADDITIONAL FIGURES DISCUSSED IN THE MAIN TEXT
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Figure S1: PMFs of prepore formation from MD simulations in tensionless phosphatidylglycerol (PG) membranes
with increasing tail length and tail unsaturation. The numbers in the legend indicate the structure of the two tails
in format number of carbon atoms:number of double bonds. Rationalized by the larger PG head groups as compared
to PC head groups, the PMFs suggest increased tendencies of forming a metastable prepore, as evident from the
pronounced nucleation barriers for DLPG and DMPG, and from the shallow barrier for DPPG, POPG, and DOPG
(compare Fig. 1A).
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Figure S2: Trajectories of independent free MD simulations starting from randomly picked frames with an open
pore (restrained to ξ = 1). No bias was applied to the simulations, and all parameters were chosen as described in
Sec. III A. In such free atomistic simulations, the simulation time plotted on the abscissa corresponds to real
physical time. To visualize the spontaneous closing of the pores during the free simulations, the trajectories are
projected onto the reaction coordinate ξ. ξ ≈ 1 and ξ ≈ 0.3 correspond to open pores and flat unperturbed
membranes, respectively (arrows in left panel). Eight independent simulations were conducted for each lipid type:
(from left to right) DLPC, DMCP, DPPC, POPC, and DOPC. Curves with different colors indicate independent
trajectories for improved statistics. All pores in bilayers of DPPC, POPC, and DOPC close within 75 ns, compatible
with the absence of a nucleation barrier in these membranes (Fig. 1). For bilayers of DLPC and DMPC, in contrast,
the pore closes in only 3 out of 16 200-nanosecond simulations, confirming the metastability of the prepores, and
compatible with the nucleation barriers revealed by the PMFs (Fig. 1).
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Figure S3: PMFs of prepore formation from MD simulations in tensionless phosphatidylcholine membranes,
computed with the Slipids [S1] instead of the Charmm36 lipid force field [S2]. The PMFs reasonably agree between
Slipids and Charmm36 force fields.

Figure S4: Density of head groups (top row), tails
(middle row), and water (bottom row) from atomistic
MD simulations. Left column: thinned membrane;
middle column: transition state; right column: prepore.
The densities are computed from the umbrella windows
indicated by red dots in Fig. 1A.

Figure S5: Density of head groups (top row), tails
(middle row), and solvent (bottom row) from SCFT of
the coarse-grained (CG) model. Left column: thinned
membrane; middle column: transition state; right
column: prepore. The three states are highlighted along
the MFEP as grey dots in Fig. 1B.
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Figure S6: Spontaneous curvature, c0, of coarse-grained
membranes versus head-to-tail volume ratio, fH . c0
increases linearly with fH , which supports the intuition
that as the head-group volume fraction increases, the
effective shape of the lipid becomes more conical and
the lipid prefers structures with higher curvature. For
atomistic PC lipids, no such linear relation holds.

Figure S7: Head-group volume fraction, fH , of
atomistic (tan circles) and coarse-grained (CG, magenta
squares) lipids. fH of atomistic models were computed
using Voronoi tessellation. The blue and green
backgrounds highlight lipids that form metastable and
unstable pores, respectively.
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Figure S8: PMFs of prepore formation from atomistic
MD simulations for (A) DMPC and (B) DPPC with
and without tension, γ, using the Charmm36 lipid force
field [S2]. γ may influence the PMF by thinning of the
membrane, as indicated by a shift of the PMF minimum
(flat membrane) to larger ξ. However, γ does not have a
strong influence on the stability of the prepore, i.e., on a
(possible) PMF minimum at ξ ≈ 1.

II. SELF-CONSISTENT FIELD THEORY (SCFT)
OF COARSE-GRAINED (CG) LIPID

MEMBRANES

A. Minimal coarse-grained (CG) model

Our coarse-grained (CG) model consists of a mem-
brane bilayer assembled from double-tailed lipids, L, in
an explicit solvent, S. The solvent molecules are de-
scribed as monomers, and the lipids are represented as
graft copolymers, which we model as discrete Gaussian
chains with NH head monomers and 2NT tail monomers
(cf. Fig. S9). In using the discrete Gaussian chain as
our model, we capture the finite-size bond length, but
ignore the bending rigidity of real lipids. However, bond-
order parameters calculated from lattice models [S3–S5]
in the same spirit as our discrete Gaussian chain model
have shown good qualitative agreement with experimen-
tal findings [S6, S7] and even excellent agreement with
molecular dynamics simulations [S8–S10]. Similar mod-
els have been used to study other topology-altering mem-
brane processes [S11, S12].

The particle-based Hamiltonian for this model, ac-
counting for bonded and non-bonded interactions, is de-
fined by

H′
kBT

=

nL∑
i=1

hi
(
rNL

)
+
ρ0

2

∫
drdr′uαβ(r, r′)φ̂α(r)φ̂β(r′).

(S1)

In this expression, the first term represents the bonded
interactions of the nL lipids, and takes the form

hi(r
NL) =

3kBT

2b20

NL−1∑
j=1

(rj+1 − rj)
2, (S2)

where NL = NH +2NT is the number of monomers, kBT
is the thermal energy, b0 is the statistical bond length,
and rj is the position of monomer j. The second term
in the Hamiltonian represents the pair-wise interaction
potentials between monomer species, where ρ0 is the ref-
erence density and the summation is over pairs of Greek
indices: α, β = H,T, S. The microscopic volume fraction
of monomer species is defined by

φ̂S(r) =
1

ρ0

nS∑
i=1

δ(r− ri), (S3)

φ̂H(r) =
1

ρ0

nL∑
i=1

NH∑
j=1

δ(r− rij), (S4)

φ̂T (r) =
2

ρ0

nL∑
i=1

NT∑
j=1

δ(r− rij), (S5)
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Figure S9: Cartoon of the double-tailed lipid model
consisting of head (blue) and tail (red) monomers. The
chain propagators qH and qT are used to obtain the
single-molecule partition function in Eq. (S16), whereas

the complementary chain propagators q†H and q†T are
additionally required for computing the volume
fractions in Eqs. (S17) and (S18).

for the solvent, head, and tail monomers, respectively.
Importantly, a strict incompressibility condition at all
positions within the system volume is also accounted for
by requiring the solvent volume fraction obeys the con-

straint, φ̂S(r) = 1− φ̂H(r)− φ̂T (r).

B. Self-consistent field theory (SCFT)

We work in the grand-canonical ensemble, where the
numbers of lipids and solvent molecules are controlled
by their chemical potentials µL and µS . Due to the in-
compressibility constraint, only the difference µL − µS
is relevant. Note that in the grand-canonical ensemble,
the excess free energy (relative to the homogeneous solu-
tion) per unit area directly gives the membrane tension,
γ, where the chemical potential difference, µL − µS , is
used to control the excess free energy.

In self-consistent field theory (SCFT), the interactions
among molecules are replaced with the interactions be-
tween a single molecule and an effective external field
[S13]. As a result, the field-theoretic partition function
may be written as a functional integral over fluctuating
fields

Ω[Wα,Φα] =

∫
DWαDΦα exp

(
−G[Wα,Φα]

kBT

)
, (S6)

where Φα and Wα now denote the spatially varying vol-
ume fraction and conjugate potential field variables, re-
spectively. The term in the exponent of Eq. (S6) is the

field-theoretic free energy, defined by

G
kBT

= e
µL
kBT QL[WH ,WT ]− e

µS
kBT QS [WS ] (S7)

+ρ0

∫
dr
[χαβ

2
ΦαΦβ +

κα
2

(∇Φα)2 −WαΦα

]
,

where QL[WH ,WT ] and QS [WS ] are the single-molecule
partition functions of the lipids and solvent molecules,
respectively. The second line in Eq. (S7) contains the
Flory-Huggins χαβ and square-gradient κα terms, which
capture the local and nonlocal interactions [S14], as well
as a term that couples the volume fraction Φα to its
conjugate potential field Wα. Again, the incompress-
ibility condition is accounted for by constraining ΦS =
1− ΦH − ΦT .

Extremizing Eq. (S7) we obtain a set of SCFT equa-
tions that determine the saddle-point values for the field
variables:

δG
δΦα

∣∣∣∣
Φα=φα

= 0;
δG
δWα

∣∣∣∣
Wα=wα

= 0. (S8)

Variation with respect to ΦH and ΦT yield the conjugate
potential fields

wH(r) = wS(r) + χSH [φS(r)− φH(r)]

+ [χHT − χTS ]φT (r)− κH∆φH(r), (S9)

wT (r) = wS(r) + χTS [φS(r)− φT (r)]

+ [χHT − χSH ]φH(r)− κT∆φT (r);(S10)

and variation with respect to Wα yields the volume frac-
tion fields

φH(r) = −e
µL
kBT

ρ0

δQL
δwH(r)

, (S11)

φT (r) = −e
µL
kBT

ρ0

δQL
δwT (r)

, (S12)

φS(r) = −e
µS
kBT

ρ0

δQS
δwS(r)

=
e
µS
kBT

ρ0
Z0e

−wS(r), (S13)

where the spatially-varying volume fraction, φα(r), and
conjugate field, wα(r), variables now correspond to their
saddle-point values and are denoted by lower-case letters.

The solvent volume fraction, φS(r), in Eq. (S13)
is obtained by noting that the single-molecule parti-
tion function for the solvents is defined by QS [wS ] =
Z0

∫
dr e−wS(r), where Z0V is the partition function in

the absence of an external field. To compute the vol-
ume fraction of the head and tail monomers, φH(r) and
φT (r), in Eqs. (S11) and (S12), we note that the single-
molecule partition function for the lipids, QL[wH , wT ],
must additionally take into account the chain connec-
tivity. Here, we introduce the chain propagator q(r, i),
which gives the statistical weight for a chain to have
monomer i at position r. The chain propagator for the
discrete Gaussian chain begins with the initial condition
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q(r, 1) = e−w(r)/kBT and is built up recursively from the
ends of the chain according to

q(r, i) = e
−w(r)
kBT

∫
dr′p(r− r′)q(r′, i− 1), (S14)

where p(b) is the normalized bond transition probability,
and is defined by

p(b) =

(
3

2πb20

)d/2
exp

(
−3b2

2b20

)
. (S15)

In this expression, d is the dimensionality and the sta-
tistical segment length is given by b20 ≡ Re0

2/(N − 1).
Standard methods for numerically solving for the chain
propagators are described in detail in Ref. [S13]. We
use the Scheutjens and Fleer lattice SCFT method [S15],
where additional substeps between physical monomers
are necessary for numerical stability and accuracy of the
Scheutjens-Fleer propagator approximation to the Gaus-
sian propagator. These substeps also satisfy Eq. (S14),
but without the Boltzmann weight due to the external
field.

Thus, the total partition function for the lipid is ob-
tained by joining the chain propagators qH(r, NH) and
q2
T (r, NT + 1) for the head and two tail branches, respec-

tively, at the branch point of the lipid:

QL[wA, wB ] = Z0

∫
dr qH(r, NH)e2wH(r)q2

T (r, NT + 1),

(S16)
where the extra exponential factor e2wH(r) corrects for
over-counting the joined monomer, which we define to
be a head monomer; see Fig. S9 for a schematic of the
chain propagators for the discrete Gaussian chain model
of the lipid.

Finally, the spatially-varying head and tail volume
fractions in Eqs. (S11) and (S12) can be expressed in
terms of the chain propagators:

φH =
e
µL
kBT

ρ0
Z0

NH∑
i=1

qH(r, i)e
wH (r)

kBT q†H(r, NH − i+ 1),(S17)

φT = 2
e
µL
kBT

ρ0
Z0

NT∑
i=1

qT (r, i)e
wT (r)

kBT q†T (r, NT + 1− i+ 1),

(S18)

where the extra exponential factor again corrects for over-
counting the monomer when the two propagators for the
discrete Gaussian chain are joined. Note that we have

introduced the complementary chain propagators q†H(r, i)

and q†T (r, i), which also satisfy Eq. (S14) but start from
the branch point with the initial conditions:

q†H(r, 1) = ewH(r)q2
T (r, NT + 1), (S19)

q†T (r, 1) = ewH(r)qT (r, NT + 1)qH(r, NH). (S20)

Finally, we note that Eq. (S13) may be trivially solved
to obtain

wS(r) = − log

[
ρ0

Z0
(1− φH(r)− φT (r))

]
, (S21)

where the incompressibility constraint, φH+φT +φS = 1,
has been used to eliminate φS(r), and we have defined
µS = 0 because the chemical potentials of the solvents
and lipids are not independent for an incompressible sys-
tem. Eqs. (S9), (S10), and (S21) for the conjugate po-
tential fields, together with Eqs. (S17) and (S18) for the
volume fraction fields are solved iteratively, until conver-
gence, subject to the incompressibility constraint.

C. String method to obtain the minimum
free-energy path (MFEP)

Whereas the saddle-point solutions to the SCFT equa-
tions correspond to metastable or equilibrium states of a
bilayer membrane, our particular interest is in the tran-
sition paths connecting an equilibrium, defect-free mem-
brane to one containing a macroscopic pore, through an
intermediate prepore state. This transition path is rep-
resented by a string, i.e., a sequence of morphologies,
on the free-energy landscape. Given an initial string be-
tween two states, the string method [S16] locally evolves
the path to a minimum free energy path (MFEP), cor-
responding to the most probable transition path, where
the gradient of the free energy perpendicular to the path
vanishes. The string method has successfully been com-
bined with field-theoretic models to compute transition
pathways in a variety of self-assembling systems [S17–
S19].

To initialize our string, we assign our starting mor-
phology to a defect-free planar bilayer, and our ending
morphology to a planar bilayer with a pore whose radius
is constrained to be larger than the size of the transition
state. In general, there may be multiple MFEPs con-
necting any given starting and ending morphologies, and
the MFEP that the string converges to will depend on
the initial path. Various paths can be explored by spec-
ifying intermediate morphologies obtained, for example,
from particle-based simulation. Here, we chose a simple
linear interpolation between the two end morphologies.
The MFEP is then calculated according to the following
iterative, two-step procedure [S16]: First, each morphol-
ogy along the string is evolved independently according
to its steepest-descent dynamics. We use a version of the
external potential dynamics (EPD) [S20, S21] that refor-
mulates the dynamics of the collective densities in terms
of the conjugate potential fields:

dWα(r)

dt
= D

δG
δWα(r)

, (S22)

where D is a scalar mobility coefficient. Thus the same
numerical methods from EPD can be used to update the
potential fieldsWα(r), which are then used directly to up-
date the volume fraction fields φα(r). The updated φα(r)
represent the average density of independent molecules
in the presence of the new Wα(r). Second, a restoring
step redistributes the morphologies in a direction tangent
to the string. This is enforced by reparameterizing the
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states to be equidistant along the string according to the
collective volume fraction fields φα(r) of the monomeric
species. The dynamics, followed by the reparameteri-
zation, are computed at every iteration step. Once con-
verged, the string coincides with the MFEP. The contour
parameter along the string is the optimal reaction coor-
dinate.

III. ATOMISTIC MD SIMULATION

A. Setup and parameters

Five membrane systems of 128 DLPC, DMPC, DPPC,
POPC, DOPC, DLPG, DMPG, DPPG, POPG, or
DOPG lipids and 40 water molecules per lipid were built
with the MemGen web server [S22]. Systems of PG lipids
were neutralized by adding 128 potassium ions. In pre-
vious work, we found that simulating 128 lipids is suf-
ficient to avoid finite-size artifacts in simulations with
a small pore [S23]. Each system was equilibrated un-
til the box dimensions and the potential energy were
fully converged. Parameters from CHARMM36 force
field [S2] were used for the lipid molecules and wa-
ter was modeled with the CHARMM-modified TIP3P
model (with Lennard-Jones (LJ) interactions on hydro-
gen atoms) [S2]. All simulations were performed with the
GROMACS 2016.2 software. Bonds and angles of water
were constrained with the SETTLE algorithm [S24], and
bonds of lipids between heavy atoms and hydrogen atoms
were constrained with LINCS [S25]. The temperature of
the simulations was controlled at 300 K for all lipids ex-
cept DPPC. Since DPPC and DPPG form a gel phase
at 300 K, the temperature of the DPPC and DPPG sim-
ulations was controlled at 323 K. The temperature was
controlled with a stochastic dynamics integrator [S26]
during umbrella sampling, and using velocity-rescaling
during other simulations (with separate heath baths for
solvent and lipid) [S27]. An integration time step of 2 fs
was applied. The pressure was controlled at 1 bar us-
ing a semi-isotropic weak coupling scheme (τ = 1 ps)
[S28]. Electrostatic interactions were calculated using
the particle-mesh Ewald (PME) method [S29, S30]. Dis-
persion interactions and short-range repulsion were de-
scribed by a switched Lennard-Jones (LJ) potential with
cut-offs at 1 nm and 1.2 nm, respectively. Direct-space
Coulomb interactions were truncated at 1.2 nm. Unbi-
ased simulations were carried out with the Gromacs sim-
ulation software, version 2016 [S31]. Simulations with re-
straints along the reaction coordinate, ξ, were done with
an in-house modification of Gromacs 2016 [S23], which is
available from the authors upon request.

To exclude the possibility that the applied force field
could qualitatively change the results, simulations using
the Slipids [S1] instead of the CHARMM36 force field
were also conducted. Here, all bonds were constrained
with LINCS [S25], and a plain cut-off at 1.2 nm was ap-
plied for LJ interactions. Water was described with the

normal TIP3P model [S32]. All other parameters were
identical to the CHARMM36 simulations. The PMFs
computed with Slipids were found to be similar to the
PMF computed with CHARMM36 (cf. Figs. 1A and S3).

B. Reaction coordinate for atomistic description

Umbrella sampling simulations were used to calculate
PMFs for pore nucleation in the atomistic membrane
models. For umbrella sampling, we used a reaction co-
ordinate, ξ, that is capable of probing the formation or
rupture of a continuous polar defect in a lipid membrane
[S23]. ξ is defined using a membrane-spanning cylinder
that is decomposed into Ns slices taken symmetrically
around the center of mass of the hydrophobic membrane
atoms along the membrane normal:

ξ = N−1
s

Ns−1∑
s=0

δs(N
(p)
s ). (S23)

Technical details about ξ and its performance were dis-
cussed previously [S23]. In brief, ξ defines the fraction of

slices that are occupied by polar atoms, where N
(p)
s de-

notes the number of polar heavy atoms in slice s, and δs is
a continuous indicator function (0 ≤ δs < 1) that equals

zero if N
(p)
s = 0 and a value close to unity if N

(p)
s ≥ 1.

Note that δs remains smaller than unity, irrespective of
how many polar atoms are located in slice s. Functions

δs and N
(p)
s are further defined as differentiable switch

functions using Cartesian coordinates of atoms as argu-
ments.

By design, ξ differentiates between (i) polar defects
partly penetrating the membrane and (ii) a continuous
defect spanning the entire membrane and, hence, it is
quite suitable to model the transition region of pore for-
mation. We have previously shown that a pulling system
along ξ efficiently introduced a pore into the membrane
and that restraints along ξ are capable of restraining the
system close to the transition state of pore formation.
Further, we showed that PMF calculations along ξ do
not suffer from hysteresis effects [S23].

C. PMF calculations for pore nucleation

PMFs were computed along the reaction coordinate ξ
defined in Eq. (S23) using the technique of umbrella sam-
pling [S33]. Starting frames for umbrella sampling were
taken from a“slow-growth”pore-opening simulation. Ac-
cordingly, starting in the equilibrium state, the pore was
opened by pulling the system along ξ with a harmonic
potential (force constant 2000 kJ mol−1). The minimum
of the harmonic potential was moved with constant ve-
locity from ξ = 0 at time 0 to ξ = 1 at 45 ns (20 ns
for PG membranes). Umbrella sampling was performed
using 24 umbrella windows. To ensure that the tran-
sition state of pore formation is well sampled, we used
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Table I: Summary of parameters used for umbrella
sampling simulations and used to define the reaction
coordinate. Simulation time per umbrella window t,
temperature T , and four parameters required to define
the reaction coordinate: the parameter ζ, cylinder
radius Rcyl, slice thickness ds, and number of slices Ns.

Lipid t (ns) T (K) ζ Rcyl (nm) ds (nm) Ns

DLPC 150 300 0.75 1.2 0.1 19
DMPC 150 300 0.75 1.2 0.1 23
DPPC 150 323 0.75 1.2 0.1 29
POPC 150 300 0.75 1.2 0.1 29
DOPC 150 300 0.75 1.2 0.1 30
DLPG 100 300 0.75 0.8 0.1 17
DMPG 100 300 0.75 0.8 0.1 19
DPPG 100 323 0.75 0.8 0.1 23
POPG 100 300 0.75 0.8 0.1 28
DOPG 100 300 0.75 0.8 0.1 26

a tighter spacing of higher umbrella force constants at
ξ ≥ 0.7 as compared to ξ < 0.7. Accordingly, 11 windows
were distributed between ξ = 0 and ξ = 0.65 in steps of
0.065, using a force constant of 5000 kJ mol−1. An ad-
ditional 13 windows were distributed between ξ = 0.7
and ξ = 1 in steps of 0.025, using a force constant of
10000 kJ mol−1. Each umbrella window was simulated
for 150 ns for PC, and for 100 ns for PG membranes (Ta-
ble I). For PG membranes, we defined ξ using a narrower
transmembrane cylinder (Rcyl = 0.8 nm) as compared to
PC membranes (Rcyl = 1.2 nm). This choice is ratio-
nalized by more pronounced membrane undulations of
the soft PG membranes, which could lead to undesirable
hysteresis effects when pulling the system along ξ. The
first 10 ns were omitted for equilibration, if not stated
otherwise. Longer equilibration changed the PMFs only
marginally. The PMFs were constructed from the um-
brella histograms with the weighted histogram analysis
method (WHAM), as implemented in the g wham soft-
ware [S34, S35]. The parameters required for defining the
reaction coordinate are summarized in Table I. Here, the
thickness ds = 0.1 nm of the slices was chosen such that
pairs of polar atoms in neighboring slices are capable of
forming stable hydrogen bonds, even in the presence of
some disorder and fluctuations. The parameter ζ = 0.75
defines the fraction to which a slice is filled by the ad-
dition of the first polar atom. Ns was chosen such that
ξ ≈ 0.25 for the flat unperturbed membrane; hence larger
Ns were chosen for thicker membranes.

D. Head group volume fraction of atomistic lipids

The head group volume fraction fH of CG lipids is sim-
ply given via the number of head group and tail beads.
For atomistic models, fH was computed using three-
dimensional (3D) Voronoi tessellation, as implemented
in the Voro++ software (Fig. S7) [S36]. For each lipid
type, the volume of an equilibrated, unperturbed mem-

brane system was decomposed into atomic volumes of
water, head group, and tail atoms. Atoms of the choline,
phosphate, glycerol, and ester groups were taken as“head
group”, and the aliphatic chains as “tails”. Water atoms
were not considered for fH .

E. Free-energy calculations of pore growth

The growth of a fully formed polar defect was sim-
ulated as follows. A simulation system of 200 DMPC
lipids plus 60 water molecules per lipid was set up with
MemGen [S22] and subsequently fully equilibrated. A
prepore was induced using a slow-growth pulling simu-
lation along the reaction coordinate, ξ, within 40 ns and
up to ξ = 1. Next, the cross-sectional area, A, of the box
was increased in 200 steps. Within each step, the box
dimensions and atomic coordinates were scaled in the x-
and y-directions, corresponding to the membrane plane,
by a factor of 1.21/200. After the scaling, the energy was
carefully minimized, and the system was equilibrated for
2250 ps. During equilibration, pressure coupling was al-
lowed in the z-direction but the area, A, was fixed. In
addition, the system was restrained to ξ = 1 to ensure
that the pore did not close. The equilibrated system
was used as input for the next step of scaling of the x-y
coordinates. This procedure generated 200 frames with
increasing membrane area and hence increasing pore ra-
dius.

30 frames of increasing area were picked for long simu-
lations with constant area but without restraints along ξ.
17 systems with smaller area were simulated for 300 ns;
13 systems with larger area were simulated for 200 ns.
After removing the first 5 ns of equilibration, the tension
was computed from the anisotropy of the pressure tensor,

Σ(A) =

〈
Lz

[
Pzz(t)−

Pxx(t) + Pyy(t)

2

]〉
A

. (S24)

Here, P is the pressure tensor, and 〈·〉A is the average
over simulation time, t, at constant box area, A. The
free energy was computed following

∆F (A) = F0 +

∫ A

A0

Σ(A′) dA′, (S25)

where the offset, F0, was adjusted so that the PMF for
pore growth (Fig. 3D, right) matched the PMF for pore
nucleation near ξ ≈ 1 (Fig. 3D, left). The area, A, was
translated to the increase in area relative to a flat un-
perturbed membrane, ∆A = A−A0, where we obtained
A0 = 62.60 nm2 under the simulation conditions.

The radius of the pore was computed from the average
water density within an 8 Å-layer parallel to the mem-
brane and centered in the z-direction by the membrane
center-of-mass. The water density was computed as a
function of the radial distance from the axis of the pore.
Here, the axis of the pore was taken as the cylinder axis
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defined by our reaction coordinate, as described previ-
ously [S23]. The radius of the pore Rpore was defined
as the radial distance from the pore axis where the wa-
ter density drops below half the bulk water density. The
pore radius versus ∆A is shown in Fig. S10. Following
Tolpekina et al., the line tension of the pore rim was
computed using σ(A) = Rpore(A)Σ(A) [S37]. Statistical
errors of σ(A) were computed by binning analysis, as im-
plemented in the Gromacs module “gmx analyze” [S38].

To reduce the computational cost, the simulations of

pore growth were conduced with lipid parameters taken
from Berger et al. [S39], using a 4 fs time step, PME
electrostatics [S29, S30], and a cut-off at 1 nm for direct-
space interactions. Water parameters were taken from
the SPC model [S40]. The pressure was controlled with
the Parrinello-Rahman barostat (τ = 5 ps) [S28], using a
compressibility of zero in the x-y plane, thereby fixing the
box area. All lipid bonds were constrained with LINCS
[S25]. Other parameters were chosen as described above.
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Figure S10: Pore radius versus increase in box area
during simulations of pore growth, as used for
computing the line tension, σ, of the pore edge
(Fig. 3D, right).
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