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Abstract

Small-angle X-ray scattering is an increasingly popular technique used to detect protein

structures and ensembles in solution. However, the refinement of structures and ensembles

against SAXS data is often ambiguous due to the low information content of SAXS data,

unknown systematic errors, and unknown scattering contributions from the solvent. We

offer a solution to such problems by combining Bayesian inference with all-atom molecular

dynamics simulations and explicit-solvent SAXS calculations. The Bayesian formulation

correctly weights the SAXS data versus prior physical knowledge, it quantifies the precision

or ambiguity of fitted structures and ensembles, and it accounts for unknown systematic

errors due to poor buffer matching. The method further provides a probabilistic criterion for

identifying the number of states required to explain the SAXS data. The method is validated

by refining ensembles of a periplasmic binding protein against calculated SAXS curves.

Subsequently, we derive the solution ensembles of the eukaryotic chaperone heat shock

protein 90 (Hsp90) against experimental SAXS data. We find that the SAXS data of the apo

state of Hsp90 is compatible with a single wide-open conformation, whereas the SAXS data

of Hsp90 bound to ATP or to an ATP-analogue strongly suggest heterogenous ensembles

of a closed and a wide-open state.

Author summary

In solution, many proteins adopt ensembles of multiple distinct states. The relative con-

centrations of the states are tightly controlled by factors such as pH, phosphorylation, or

ligand binding, and a misbalance between the states underlies diseases such as cancer or

neurodegeneration. However, detecting protein ensembles in experimental data has

remained challenging. We present a statistically founded procedure for refining protein

structures and ensembles against X-ray solution scattering data by combining atomistic

simulations with Bayesian inference.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005800 October 18, 2017 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Shevchuk R, Hub JS (2017) Bayesian

refinement of protein structures and ensembles

against SAXS data using molecular dynamics.

PLoS Comput Biol 13(10): e1005800. https://doi.

org/10.1371/journal.pcbi.1005800

Editor: Anders Wallqvist, US Army Medical

Research and Materiel Command, UNITED STATES

Received: April 6, 2017

Accepted: September 29, 2017

Published: October 18, 2017

Copyright: © 2017 Shevchuk, Hub. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was supported by the

Deutsche Forschungsgemeinschaft (grant No. HU

1971/1-1, HU 1971/3-1, HU 1971/4-1). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005800
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005800&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005800&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005800&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005800&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005800&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005800&domain=pdf&date_stamp=2017-10-30
https://doi.org/10.1371/journal.pcbi.1005800
https://doi.org/10.1371/journal.pcbi.1005800
http://creativecommons.org/licenses/by/4.0/


Introduction

Proteins are dynamic nanomachines that often populate heterogeneous ensembles of multiple

distinct structural states. Controlling the relative population of such states is pivotal for the

correct functioning of biological cells, and any misbalance between states may lead to severe

conditions such as cancer or neurodegeneration. Detecting, understanding, and manipulating

heterogeneous protein ensembles has therefore remained a central goal of molecular biophys-

ics [1].

Deriving solution ensembles of proteins from structural experimental data has remained

challenging, mainly because the information content of the data is typically insufficient to

define all degrees of freedom of the ensemble [2, 3]. Consequently, upon fitting of structures

or ensembles against experimental data, the data must be complemented by a physical model

that restrains the protein into physically reasonable conformations, thereby reducing the risk

of overfitting the model. Bayesian inference provides a route founded on probability theory for

combining experimental data with physical models [4]. Applied to structure determination,

Bayesian inference may become computationally expensive and technically challenging since

it requires explicit sampling of the conformational space of the protein. However, it also holds

a number of key advances over more simple optimization algorithms, as it provides statistically

founded procedures (i) to weight the experimental data versus prior physical knowledge, and

(ii) to quantify the uncertainty (or ambiguity) of the fitted structural model [5]. Due to its

probabilistic rigor, Bayesian inference has been gaining increased popularity in various fields

of biophysics, and it has hence been successfully applied for the refinement of structures

against restraints from NMR, EPR, cryo-EM, and single-particle X-ray diffraction [5–11]. Fol-

lowing the pioneering work by Rieping et al., we refer to structural modeling based on Bayes-

ian statistics as ‘inferential structure determination’ (ISD) [6].

Small-angle X-ray scattering (SAXS) is an increasing popular method that is in principle

capable of detecting biomolecular structures and ensembles in solution [12, 13]. However, due

to the low information content of SAXS data, refining structures or ensembles without overfit-

ting poses a major challenge. For the refinement of individual structures against SAXS data,

two routes have been suggested to reduce the risk of overfitting: first, during refinement,

nearly all degrees of freedom of the biomolecule are constrained, leading to methods such as

rigid-body modelling or normal mode fitting [14–17]. Second, physical information may be

added to the low-information SAXS data, for instance by coupling a force field-based molecu-

lar dynamics (MD) simulation to the data with an energetic restraint [18–20]. Here, we follow

the second route, building upon our method of SAXS-driven MD simulations [18]. SAXS-

driven MD simulations drive biomolecular structures into conformations that are compatible

with the data, using a differentiable harmonic restraint to the data. Critically, the method

employs explicit-solvent calculations for predicting SAXS curves from the simulations frames,

which were shown to provide accurate prediction for small and wide angles without the need

of adjusting fitting parameters for the hydration layer or excluded solvent (see Fig 1) [21, 22].

In other words, the method uses a highly accurate and predictive ‘forward model’. However, as

formulated previously, the method was not Bayesian and, consequently, did not yet benefit

from advantages of ISD-related approaches (see above).

Many methods for the refinement of heterogenous ensembles against experimental data fol-

low a “sample-and-select” strategy [23]. Accordingly, first, an ensemble is proposed by sam-

pling from a computationally efficient physical model, such as a coarse-grained force field.

Second, a limited number of structures or clusters are picked from the proposed ensemble.

Third, the weights of the structures or clusters are modified in a statistically meaningful man-

ner until the data back-calculated from the refined ensemble agrees with the given experimental
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data. Examples of this strategy in the context SAXS are the EROS, BSS-SAXS, and EOM meth-

ods [24–26], yet a number of related approaches have been suggested ([23] and references

therein). Interesting recent developments proposed the Bayesian derivation of continuous

ensembles from experimental data, including a development for SAXS data [27, 28].

In this work, we take an alternative approach for the refinement of ensembles against

SAXS data. First, following the ISD approach, we embed SAXS-driven MD simulations into

a Bayesian inference framework. Hence, we derive posterior distributions of protein struc-

tures in the light of the SAXS data and the applied force field. Because we simulate with a

physically accurate all-atom force field, we employ an accurate and informative prior of pro-

tein structures. Additional unknown parameters, termed nuisance parameters in context of

ISD [6], are not chosen ad hoc but instead estimated simultaneously with the protein struc-

tures. Specifically, two remaining fitting parameters as well as a systematic uncertainty due

to the buffer subtraction are taken as nuisance parameters. Second, we extend the concept of

ISD towards an ensemble of a small number of structural states, allowing us to estimate the

structural weights simultaneously with the structures and the nuisance parameters. In com-

bination, due to the commitment to Bayesian inference, the new method provides statisti-

cally founded confidence intervals for both the structures and the structural weights. In

addition, we show that the posterior distribution for the structural weights can be used as a

criterion for detecting the number of states in the ensemble that is required to explain the

data.

Bayesian interpretation of SAXS data: Goal of the method

We consider proteins that adopt an ensemble of a small number of distinct states. Typical

examples would be proteins that exist in a mixture of active and inactive states, apo and holo

states, or in a mixture of a few states along a more complex conformational cycle. We aim to

derive the coordinates R = (R1, . . ., RN) as well as the relative weights (or concentrations) w =

(w1, . . ., wN) of the states from given experimental SAXS data, where N is the number of states.

Hence, the term ‘ensemble’ does not refer to the thermodynamic ensemble, but instead to a

specific set (R, w). Notably, since the ensemble reduces to a single structure by setting N = 1,

Fig 1. Envelopes of (A) leucine binding protein (LBP) and (B) heat shock protein 90 (Hsp90), illustrated as a white surface. Water molecules

(red/white sticks) inside the envelope contributed to the explicit-solvent calculations used to compute the SAXS curves and the SAXS curve gradients, as

required for the refinement simulations. (A) The N- and C-terminal domains of LBP are shown in red and blue cartoon representation, respectively. (B)

The N-terminal, middle, and C-terminal domains of Hsp90 are shown in red, yellow, and blue cartoon representation, respectively.

https://doi.org/10.1371/journal.pcbi.1005800.g001
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Bayesian structure refinement (instead of ensemble refinement) is contained in the method

presented here as a special case.

Posterior distribution of the ensemble

Since the number of independent data points in a SAXS curve is much smaller than the num-

ber of degrees of freedom of any protein, it is unlikely that only a single ensemble (R, w) fits

the SAXS data, but instead a wide range of ensembles are typically compatible with the data. A

statistically founded procedure to infer the ensemble from the data can be formulated as the

conditional probability p(R, w, θ|D, K) that quantifies the plausibility of the ensemble (R, w) in

the light of the SAXS data D and prior physical knowledge K [4]. The symbol θ summarizes

nuisance parameters, which are of limited interest but required for evaluating whether the

ensemble (R, w) is compatible with the data D (see below). The posterior distribution is most

conveniently evaluated using Bayes’ theorem:

pðR;w; yjD;KÞ / LðDjR;w; y;KÞpðRjKÞpðwjKÞpðyjKÞ: ð1Þ

Here, L(D|R, w, θ, K) denotes the likelihood that the data D were measured given the ensemble

(R, w) and nuisance parameters θ. The functions π(R|K), π(w|K), and π(θ|K) denote the prior

distributions of possible protein conformations, weights, and nuisance parameters. Due to the

low information content of SAXS data, L(D|R, w, θ, K) provides only limited information, i.e.,

L is a wide function of R. Hence, in order to draw structural conclusions from the data, that is,

to arrive at a reasonably narrow posterior distribution, it is critical to impose an informative

tight prior π(R|K) of protein conformations, which is here achieved by applying an accurate

physical model. In the method presented here, the prior π(R|K) is naturally given through an

unbiased MD simulation, where K represents the physical laws and the force field underlying

the MD simulation.

Accounting for unknown systematic errors

Formulating a likelihood function L for SAXS refinement is not straightforward because

experimental SAXS data report purely statistical errors, whereas systematic errors, for instance

due to poor buffer matching, are typically unknown. For data recorded at modern single-pho-

ton counting detectors, systematic error may dominate the overall uncertainty, suggesting that

systematic errors strongly contribute to the likelihood L. In addition, for comparing experi-

mental with calculated SAXS curves, free fitting parameters must be adjusted [21, 29–31].

Since both the systematic errors and fitting parameters are a priori unknown, a full Bayesian

treatment requires that those parameter are simultaneously estimated with the structures and

weights. Hence, systematic errors as well as fitting parameters are treated as nuisance parame-

ters θ in the present method.

In practice, one is mainly interested in the ensemble (R, w), but not in the nuisance parame-

ters θ. The statistically correct way of reducing the general posterior p in Eq 1 to the posterior

of the structural ensemble is to marginalize out the nuisance parameters,

pðR;wjD;KÞ ¼
Z

dy pðR;w; yjD;KÞ: ð2Þ

In our method, the fitting parameters are marginalized out analytically at the level of the likeli-

hood, whereas systematic errors are explicitly sampled and marginalized out numerically

(Methods and materials). To visualize the high-dimensional p(R, w|D, K), the posterior may be

further projected onto intuitively important coordinates, such as the distance between two

protein domains, the radius of gyration of the protein, or the weight of an interesting state.
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Energy analogs

By taking the negative logarithm of the posterior, Eq 1 takes the form of a hybrid energy that is

commonly applied for structure refinement [5, 9], yet corrected with the contributions from

the prior distributions:

Ehybrid ¼ VffðR;KÞ þ EexpðR;w; y;D;KÞ � b
� 1 ln ½pðwjKÞ pðyjKÞ�: ð3Þ

Here, the posterior was identified with a hybrid energy Ehybrid = −β−1 ln p(R, w, θ|D, K), where

β denotes the inverse temperature. The prior for the protein structures is taken from the

MD force field energy as Vff(R, K) = −β−1 ln π(R|K), after marginalizing out the solvent coordi-

nates (see Methods and materials). The experiment-derived energy is given via the likelihood,

Eexp = −β−1 ln L, adding an energetic penalty if the SAXS curve calculated from the ensemble

(R, w) is incompatible with the data D.

Sampling the posterior distribution

Having translated the probabilities into energies, all parameters can be sampled using estab-

lished methods. Accordingly, sampling of protein structures R is conducted using Newtonian

dynamics. Here, the force on atom ℓ is given via gradients of the hybrid energy with respect to

the atomic positions, Fℓ = −rℓ Ehybrid, evaluated at fixed w and fixed nuisance parameters. The

fitting parameters, as shown below, are marginalized analytically at the level of the likelihood.

The remaining nuisance parameter, namely the systematic error σbuf, as well as the weights w

are sampled using Gibbs sampling, that is, Monte-Carlo moves at fixed protein coordinates R.

Calculations of the SAXS intensity and intensity gradients from (R, w), as required for sam-

pling the posterior, were conducted with the explicit-solvent algorithms established previously

[18, 21], taking accurate atomistic models for both the hydration layer and the excluded sol-

vent (Fig 1). Details on the likelihood function, assumed priors, force calculations, and sam-

pling algorithms are provided in the Methods and Materials.

A probabilistic criterion for choosing the number of states

The weights w are normalized and have non-negative elements, i.e., the relevant weight space

is given by the (N − 1)-simplex. Sampling of the weight space was accelerated using umbrella

sampling along the weights [32]. This is computationally convenient because it allows calcula-

tion of the posterior from a set of short independent simulations. More critically, this allows us

to compute the posterior for the complete weight space, including the “edge” of the simplex,

where at least one of the weights wj is zero (1� j� N). However, note that weight vectors w

with elements equal to zero specify smaller ensembles with a reduced number of states. Conse-

quently, the posterior of an ensemble of N states includes all smaller ensembles as a special

case, thereby proving a probabilistic criterion for choosing the number of states required to

explain the experimental data: if the posterior peaks at the edge of the simplex, a smaller

ensemble provides a plausible model; in turn, if the posterior near the edge is small compared

to the posterior’s maximum, a smaller ensemble is implausible.

Results

In the following, Bayesian ensemble refinement is demonstrated for two test proteins: leucine

binding protein (LBP) using calculated SAXS data and heat shock protein 90 (Hsp90) using

experimental SAXS data. We assumed that both proteins adopt a two-state ensemble of an

open and a closed structure (N = 2). We further assume that the closed structure is known,

whereas (i) the coordinates of the open structure as well as (ii) the relative open/closed weights

Bayesian structure refinement against SAXS data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005800 October 18, 2017 5 / 27

https://doi.org/10.1371/journal.pcbi.1005800


are simultaneously refined against SAXS data. Such scenarios are quite common, as a compact

holo or ground state structure might be accessible to X-ray crystallography, whereas more flex-

ible apo or excited state structures often do not crystallize. Applying the method proposed

here to larger ensembles of N> 2 is conceptually possible but beyond the scope of this article.

With increasing number of states N, due to increasing number of required umbrella windows,

the computational cost would scale exponentially with N − 1.

Leucine binding protein (LBP)

LBP is a typical representative of the superfamily of periplasmic binding proteins involved in

chemotaxis and solute uptake over membranes [33]. LBP is a well-characterized two-domain

protein, exhibiting a transition from an open (apo) to a closed (holo) state triggered by ligand

binding (Fig 2A/2B) [34, 35]. Free simulations of the closed and open state suggested center-

of-mass distances between the N- and C-terminal domains of *3 nm and 3.25 nm, respec-

tively, which is compatible with experimental SAXS data of the homologous LIVBP [18]. We

theoretically computed SAXS curves of the open and closed states (Fig 2C, solid lines), as well

as linear combinations, thereby modeling SAXS data from heterogeneous ensembles of known

open/closed weights of 0:100, 25:75, 50:50, 75:25, and 100:0 (Fig 2C, dashed lines).

The posteriors of the ensembles p(R, w|D, K) refined against these five SAXS curves are

presented in Fig 2D. To visualize the high-dimensional posterior, we projected the posterior

onto two characteristic coordinates: (i) the weight of the open state wopen, implying the weight

(1 − wopen) for the closed state, and (ii) the interdomain distance dNC of the open state (illus-

trated in Fig 2B). Evidently, all derived posterior distributions peak at the correct wopen. In

addition, the posteriors refined against SAXS curves of non-zero open-state content (Fig 2D,

four right panels) peak at the physically correct interdomain distance of *3.25 nm (Fig 2, see

also the marginalized posteriors in S1A Fig). In addition, the RMSD to the mean open struc-

ture taken from umbrella simulations, restrained to weights at the maxima of the respective

posterior, reveals that the refinement simulations rapidly approach the correct open state (S5

Fig). These findings demonstrate that the MD simulations were capable of translating the

information in the SAXS curve into the underlying heterogeneous open/closed ensemble.

The width of the posteriors rigorously quantify the degree of structural knowledge that can

(and cannot) be inferred from the SAXS curve, i.e., the posteriors quantify the ambiguity of

the refined ensemble. For the LBP ensemble refinement, the marginalized posteriors suggest

65% confidence intervals (CI) for wopen and dNC in the order of ±15% and ±0.07 nm, respec-

tively (Fig 3A and S1A Fig, S1 and S2 Tables). In addition, the posteriors in Fig 2D suggest

some correlation between wopen and dNC, as apparent from the posterior’s diagonal elongated

shapes, suggesting that the SAXS curves are compatible with an increased wopen given that the

open state is modeled more compact.

Single-state or two-state ensemble? Fig 3A presents the posterior distributions p(wopen|

D, K), as derived from the two-dimensional posteriors p(wopen, dNC|D, K) (Fig 2D) by margin-

alizing out the interdomain distance dNC. As described in the Theory section, the odds that a

single state versus a two-state ensemble underlie the SAXS data is quantified by p(wopen|D, K)

at the “edge” of the weight space, at wopen = 0 and wopen = 1, as compared to p(wopen|D, K) at

intermediate wopen. Fig 3B compares the posterior maximum at the edge pedge with the poste-

rior maximum in the entire weights space pmax, plotted as pedge/pmax. Evidently, the posteriors

refined against SAXS curves representing purely the closed or purely the open state exhibit a

peak at the edge, thus recovering that a single state is sufficient to explain this data (Fig 3A/3B,

0:100 and 100:0). In contrast, posteriors refined against SAXS curves of heterogeneous ensem-

bles are small at the edge and instead peak at intermediate wopen (Fig 3A/3B, 25:75, 50:50,

Bayesian structure refinement against SAXS data
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75:25). Hence, our method recovers that a single state is highly implausible in the light of these

SAXS curves and the force field, and that instead two states are required to explain the data.

It is instructive to compare the two-state refinement presented in Figs 2 and 3 with an

attempt to interpret the five SAXS curves of Fig 2D by a single state. To this end, we refined a

single state (N = 1) against each of the five computed SAXS curves. As expected, refining a

Fig 2. Bayesian ensemble refinement of leucine binding protein (LBP). (A) Cartoon representation of LBP in closed and (B) open states. N- and C-

terminal domains are colored in red and blue, respectively. (C) Solid lines: Computed SAXS curves of the open (light blue) and closed state (dark blue).

Dashed lines: SAXS curves of open/closed heterogeneous ensembles, computed with open/closed weights of 25:75, 50:50, and 75:25. Inset: Complete

SAXS curves up to q = 10 nm−1. Large figure: closeup view highlighting the differences between the SAXS curves. (D) Posterior distribution of the refined

two-state ensemble, projected onto the weight wopen and the interdomain distance dNC of the open state. The one-dimensional marginalized distributions

are shown in Fig 3A and S1 Fig.

https://doi.org/10.1371/journal.pcbi.1005800.g002

Fig 3. (A) Marginalized posterior of the weight of the open state from refinement of leucine binding protein

(LBP). (B) Odds that a single state vs. a two-state ensemble underlies the SAXS curves, presented as pedge/

pmax. For details, see text.

https://doi.org/10.1371/journal.pcbi.1005800.g003
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single state against the SAXS curves of purely the closed or purely the open state (100:0 or

0:100) recovers the correct interdomain distances of *3.0 nm and *3.25 nm for the closed

and open states, respectively (S1B Fig, S3 Table). In contrast, refining a single state against

SAXS curves that, in truth, represent a heterogeneous open/closed ensemble (25:75, 50:50,

75:25) leads to a misinterpretation of the SAXS data in terms of intermediate partially open

states (S1B Fig, S3 Table), contrasting the fact that such intermediate states are hardly popu-

lated in a free microsecond-long simulation. Critically, the fitted SAXS curves well match the

target curves, suggesting that a visual inspection of the fitted curves is insufficient to reveal that

such partially open states are a misinterpretation (S2 Fig). Hence, an analysis similar to the

Bayesian inference on the number of states, as presented in Fig 3, is indeed required to detect

the correct number of states from the SAXS curve.

Heat shock protein 90

Hsp90 is a chaperone that interacts with more than 200 proteins in eucaryotic cells [39–42]. It

constitutes up to 2% of the cellular protein mass [43]. Since many client proteins of Hsp90 are

oncogenic, Hsp90 has been suggested as a promising target for anti-cancer therapies [44, 45].

Structurally, Hsp90 is a homodimer, where each protomer contains three domains: an N-ter-

minal domain with the ATP binding site, a middle domain forming the interaction sites for

client proteins, and a C-terminal domain responsible for Hsp90 dimerization (Fig 4A). Crys-

tallographic, cryo-EM, and SAXS studies established that Hsp90 carries out large-scale confor-

mational transitions between a V-shaped open state and a compact closed state, controlled by

binding of ATP, ATP analogues, and client proteins [38, 46]. However, ligands do not dictate a

single well-defined state, but instead merely shift the equilibria of heterogeneous ensembles

between open and closed conformations [47, 48]. Only recently it was found that sufficient

time spent in the open state is crucial for correct Hsp90 functioning, highlighting the impor-

tance of controlling the open/closed equilibria of the chaperone [49].

Based on experimental SAXS data of yeast Hsp90 in the apo state, Hsp90 bound to the

slowly hydrolyzing ATP-analogue AMPPNP, and Hsp90 bound to ATP (Fig 4C, colored

curves [37]), we derived heterogeneous solution ensembles of the Hsp90 dimer using Bayesian

ensemble refinement. Hsp90 ensembles were modeled as two-state ensemble of (i) the closed

state, taken from the yeast crystal structure (Fig 4A), and (ii) an initially unknown open state.

Starting the simulations from a nearly closed conformation, both the structure and the relative

weight wopen of the open state were simultaneously refined against the SAXS data. The SAXS

curves of the refined two-state ensembles exhibited reasonable agreement with the experimen-

tal curves (Fig 4C).

The residuals between calculated and experimental SAXS curves are analyzed in Fig 5.

Here, panel (A) shows the residuals normalized purely by the statistical experimental errors,

ΔI(q)/σexp. The large residuals at low q (Fig 5A, red and yellow) reflect that the MD force field

did not allow conformations that accurately fullfil the data within statistical experimental

errors, possibly because accurately reproducing the data would require an energetically unfa-

vorable conformational transition (such as partial unfolding). In other words, the Bayesian

analysis revealed that, in the light of the force field, substantial systematic errors at low q are

more plausible than an ensemble that accurately matches the experimental data. Indeed, as

shown in Fig 5B the residuals normalized with respect to the total errors including statistical

and systematic errors, ΔI(q)/σtot, reveal reasonably low values over the entire q-range. As out-

lined in the Methods, we modelled systematic errors as a consequence of poor buffer match-

ing, but the analysis can not exclude other sources of remaining discrepancies such as a small

fraction of aggregated Hsp90. Further, in this work, we can not fully exclude the possibility
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that a more continuous ensemble, as supported by recent Förster resonance energy transfer

(FRET) study [50], might provide a more accurate description of the experimental conditions.

Fig 4D presents the posterior distributions p(R, w|D, K) of the Hsp90 ensembles, projected

onto two intuitive degrees of freedom: (i) the weight wopen of the open state, implying the

weight (1 − wopen) for the closed state, and (ii) the radius of gyration Ropen
g of the refined open

state, which naturally quantifies the degree of opening of the open state. The marginal posteri-

ors pðRopen
g jD;KÞ for the three ensembles, obtained by marginalizing the posteriors in Fig 4D

with respect to wopen, are presented in Fig 6 as colored lines. Evidently, the refined structures

of the open state were similar in all three ensembles, exhibiting large Ropen
g values of *6.3nm.

These Ropen
g values are *1.3 nm and *1.7 nm larger than the radii of gyration of the open

form of the bacterial HtpG homologue in the crystal and in solution environment, respectively

[38, 48], but they are compatible with previously reported open conformations of eukaryotic

apo Hsp90s [51]. Hence, the open structures of the three refined open/closed heterogeneous

ensembles are characterizing by a wide open conformation, as visualized in Fig 4B.

Fig 4E presents the marginal posteriors of the weight of the open state, p(wopen|D, K),

obtained by marginalizing the posteriors in Fig 4D with respect to Ropen
g . Evidently, wopen

strongly differs between the three ensembles. The posteriors suggest closed:open populations

Fig 4. Bayesian ensemble refinement of Hsp90. (A/B) Cartoon representation of Hsp90, the first protomer shown in grey, and the second

protomer in color. C-terminal, middle, and N-terminal domains are shown in blue, yellow, and red, respectively. (A) Closed state, modelled from the

2CG9 structure [36]. (B) Open state, refined against SAXS data. (C) Experimental SAXS curves (colored lines, taken from ref. [37]) and calculated

SAXS curves (black) computed from the refined ensembles. For clarity, curves for AMPPNP- and ATP-bound states were vertically offset, and

experimental data points with very large errors were removed. (D) Posterior distribution of refined Hsp90 ensemble plotted as function of the weight

(wopen) and radius of gyration (Ropen
g ) of the open state. For reference, The radius of gyration Rg of the closed Hsp90 structure (2CG9) and of the

partially open E. coli HptG structure (2IOQ) are indicated as pale red and grey circles [36, 38]. In addition, Rg of the experimental ensembles, taken

from Guinier fits to the SAXS curves in (C), are indicated as colored bars (color coding according to C). (E) Posterior of wopen, computed from the

maps in (D) by marginalizing out Rg.

https://doi.org/10.1371/journal.pcbi.1005800.g004
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of 68:32 and 52:48 for the AMPPNP- and ATP-bound states, respectively, with 65% confidence

intervals of ±18% (S4 Table). Hence, for the AMPPNP- and ATP-bound states, a model of a

single state is very implausible in the light of the MD force field and the SAXS data. These find-

ings resemble results from rigid-body SAXS modeling of a bacterial HtpG homologue that

suggested heterogeneous closed/open ensembles in the AMPPNP-bound state, yet without

providing confidence intervals [48]. For the Hsp90 apo state, the posterior suggests that wopen

is with 65% confidence within the interval [78%,100%], suggesting that a single open state as

well as a heterogeneous ensemble with a large wopen are both compatible with the SAXS data

and the MD force field.

Discussion

We have presented a method for the refinement of a single protein structure or of an ensemble

of structures against SAXS data, applicable to ensembles of a small number of distinct states.

By combining Bayesian inference with atomistic MD simulations, the method is capable of

inferring the structures and structural weights that gave rise to the SAXS data. The method

does not merely derive a single “best fit” against the experimental data, but instead provides

the joint posterior distribution of structures and weights, thus quantifying the plausibility of all

possible structures and ensembles in the light of data D and physical knowledge K. The width

of the posteriors yield confidence intervals founded on probability theory for both the

Fig 5. Residuals between the calculated SAXS curves and the experimental SAXS curves, evaluated

at the q-points applied during the refinement simulations of Hsp90 (color code see legend). (A)

ResidualsΔI/σexp normalized with respect to purely statistical experimental errors σexp. Large residuals at low

q reflect that the MD force field prohibited structures that would accurately match the data within statistical

errors. (B) Residuals ΔI(q)/σtot, where σtot denotes the total error including both statistical and estimated

systematic errors (see Methods for details). The reduced residuals compared to panel (A) reflect that the

Bayesian analysis suggested substantial systematic errors as the most plausible explanation for

discrepancies between calculated and experimental SAXS curves.

https://doi.org/10.1371/journal.pcbi.1005800.g005
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structures and the weights, that is, the method quantifies the precision of the refined ensemble.

Such reliable confidence intervals are required for deciding whether a structural model is con-

vincingly supported by available SAXS data, or whether additional data are needed to unam-

biguously prove a model. We stress that the confidence intervals derived here should not be

confused with the spread of “best fits” obtained by multiple repetitions of an optimization

algorithm, as common, for instance, when fitting low-resolution bead models against SAXS

data [52]. Repeated best fits test the convergence of the optimization algorithm but do not pro-

vide a statistically founded confidence interval.

Since we enforced exhaustive sampling of the weight space using umbrella sampling, the

posterior includes smaller ensembles with a reduced number of states as a special case, as given

by weight vectors w with one or multiple zero elements. We showed that this feature provides

a rigorous criterion for deciding on the number of states required to explain the experimental

data. For the apo state of Hsp90, we found that the SAXS data is compatible with a single open

state, as well as with a heterogenous open-closed ensemble with a large weight of the open

state. In contrast, for the AMPPNP- and ATP-bound states of Hsp90, we found that a single

state is unlikely in the light of the SAXS data and the MD force field, whereas a model of two

states provides a much more plausible model. Critically, Bayesian inference further allows us

to assign a confidence to these qualitative statements. Namely, the odds that a single state

underlies the SAXS data is 80% for the apo state, 20% AMPPNP-bound, and 6% for the ATP-

bound state. As such, the researcher may decide whether such confidence is sufficient to decide

on the number of states, or whether additional data, e.g. from FRET, should be included to fur-

ther increase the confidence on the number of states [53].

A property of Bayesian methods is that the computed posterior depends on the chosen pri-

ors. For Bayesian SAXS refinement, the posterior p(R, w) most critically depends on the prior

for protein conformations π(R, K), which is given through the applied force field. In this work,

Fig 6. Lines: Marginalized posteriors of the radius of gyration Ropeng of the refined open state from two-

state refinement of Hsp90+AMPPNP, Hsp90+ATP, and apo Hsp90 (for color code, see legend). The

posteriors characterize a wide open conformation. For comparison, pale green, purple, and pale blue bars

indicate the Rg values for the ensembles of Hsp90+AMPPNP, Hsp90+ATP, and apo Hsp90, respectively,

estimated from a Guinier fit to the experimental data [37]. The pale red bar indicates Rg of the closed crystal

structure of Hsp90 (2CG9), and the grey bar indicates Rg of the partially open crystal structure of E. coli HptG

(2IOQ) [36, 38].

https://doi.org/10.1371/journal.pcbi.1005800.g006
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we applied a physically accurate all-atom force field, which provides a more accurate descrip-

tion of the energy landscape as compared to rigid-body or coarse-grained force fields. How-

ever, despite major force field improvements in recent years [54], it can not be excluded that

certain force fields bias the refinement simulations towards unphysical states, in particular for

proteins with large disordered regions [55]. Hence, we recommend to use the most recent and

best validated force fields.

Depending on the size of the system and the inherent autocorrelation times, exhaustive

sampling of the posterior may become challenging. Due to the use of umbrella sampling along

wopen, we here observed rapid convergence of the marginalized posterior p(wopen|D, K), both

for LBP and Hsp90 (S6 Fig). The 2D posterior p(wopen, dNC|D, K) for LBP seemed converged at

moderate computational effort of 50 ns per umbrella window (Fig 2D), whereas the 2D poste-

rior pðwopen;Ropen
g jD;KÞ for Hsp90 converged more slowly, as apparently from the somewhat

scattered posteriors (Fig 4D). Hence, in future refinement simulations of very large systems

such as the system of Hsp90, the sampling may benefit from additional enhanced sampling

methods.

The computational cost of the simulations presented here are increased by only *15% as

compared to standard MD simulations, suggesting that the calculations are well feasible on

modern hardware. However, MD simulations are obviously more expensive than simplified

methods such as rigid-body modelling.

The sampling of structural weights has some similarity with previous sample-and-select

methods that reweighed a set of structures against SAXS data using, for instance, Bayesian or

maximum-entropy criteria [16, 24–26]. However, at variance with previous methods, we

refined the weights simultaneously with the structures, fitting parameters, and systematic

errors. This difference is not a technical subtlety but is instead critical to estimate the correct

uncertainty of the weights: In our method, by commitment to Bayesian inference, the uncer-

tainty (or ignorance) about the structure, fitting parameters, and systematic errors are propa-

gated into the uncertainty of the weights. In other words, when estimating the weights, and in

contrast to previous methods, we do not assume any precise knowledge about the structure,

fitting parameters, and systematic errors that, in truth, we do not have. This difference ratio-

nalizes why the uncertainties of fitted weights reported previously are much smaller than the

uncertainties derived here via the full Bayesian treatment [24].

The refinement simulations presented here differ from previous methods for structure and

ensemble refinement against SAXS data by a number of additional elements. First, since our

refinement simulations are steered by the experimental SAXS data, the simulations are capable

of sampling large-scale conformational transitions, which would not be sampled in an equilib-

rium simulation due to limited simulation time. An example is the open/close transition of

Hsp90 that occurs on the time scale of many seconds at experimental conditions [49]. As such,

our method does not strictly require the application of coarse-grained simulations [24, 25] or

other simplified physical models [16, 26] to visit the relevant conformational states. Second,

because we apply purely the MD force field and the SAXS data but no additional constraints,

the refinement is not limited to rigid-body motions or normal modes, which were previously

used to refine structures against SAXS data [14–17]. Hence, prior to the refinement simula-

tions, our method does not require the ad-hoc definition of rigid bodies and flexible linkers,

which may not be obvious. Third, in contrast to previous refinement methods, SAXS curves

were computed using explicit-solvent algorithms, avoiding any solvent-related fitting parame-

ters [21, 56].

In this study, we built upon the concept of “inferential structure determination” (ISD),

which was originally formulated to model NMR data with a single structural state [5, 6]. In
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short, we presented an ISD method for SAXS data using all-atom MD simulations. In addition,

we extended the ISD concept towards the refinement of a small number of states (typically two

states), but the method is not intended for the refinement of continuous and highly heteroge-

neous ensembles. Hence, our approach complements methods for the reweighing of continu-

ous ensembles against experimental data, as required for modeling of intrinsically disordered

proteins [27, 57, 58], and it further complements maximum-entropy-based methods for bias-

ing ensembles with experimental data [59–61].

We developed the method with a focus on SAXS data, but the calculations may be readily

complemented by other sources of structural information. For instance, the refinement may

be additionally guided by multiple sets of small-angle neutron scattering (SANS) data, option-

ally measured at various D2O contrasts and differently deuterated solutes. Similar to the

SAXS-guided refinement, such SANS-guided refinement simulations will benefit from the fit-

ting-free explicit-solvent scattering calculations applied here. Alternatively, the refinement

simulations may be complemented by additional distance restraints from double electronelec-

tron resonance (DEER) or FRET. Such future developments, complementing the method pro-

posed here, may provide a route to MD-based Bayesian integrative modeling.

Materials and methods

Modeling of systematic errors

A common source of systematic errors in SAXS experiments is poor buffer matching. We

therefore modeled the systematic errors σbuf as a consequence of a buffer density mismatch

δρbuf between the protein solution and the pure buffer. Following previous work [18], δρbuf

can be translated into an uncertainty σbuf of the calculated intensity Ic(q), contributing to the

likelihood function (see below).

Likelihood function

We recently found excellent agreement of SAXS curves predicted from explicit-solvent MD

simulations with experimental curves, if the experimental curves Iexp(q) were adjusted by only

two fitting parameters following Ifit(q) = fIexp(q) + c, where f denotes the fitted absolute scale

and c denotes a fitted constant offset [21], and q is the momentum transfer. Hence, we take for

the likelihood function

LðDjR;w; y;KÞ / exp �
Nindep

2Nq

XNq

i¼1

½Icðqi;R;wÞ � ðfIexpðqiÞ þ cÞ�2

f 2s2
expðqiÞ þ s2

calcðqiÞ þ s2
bufðqi; drbufÞ

" #

; ð4Þ

where θ = {f, c, δρbuf}. As shown below, the fitting parameters f and c can be marginalized out

analytically. The symbols σexp and σcalc denote statistical errors of the experimental and calcu-

lated intensities, respectively. The calculated intensity Ic is a weighted average over the intensi-

ties of the N states, Icðqi;R;wÞ ¼
PN

j¼1
wjIðqi;RjÞ. The symbols Nq and Nindep denote the total

and the independent number of data points in the SAXS curve, respectively. Nindep was esti-

mated by the number of Shannon-Nyqvist channels Nindep = qmax Dp/π, where Dp is the maxi-

mum diameter of the protein and qmax is the maximum momentum transfer of the SAXS

curve [13]. Hence, the factor Nindep/Nq is an empirical correction that accounts for the fact that

the number of independent data points Nindep in a SAXS curve is typically much smaller than

the number of q-points Nq reported in experimental SAXS curves. Without the factor Nindep/

Nq, the information content in the data would be overrated in comparison with the informa-

tion in the priors. Critically, this correction assumes that the data Iexp corresponds to a
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“smoothed” SAXS curve, and that the experimental errors σexp(qi) denote the true uncertainty

of point qi in the light of correlations of Iexp along q.

Prior distributions

A flat prior was applied for the fitting parameters, π(f) = π(c) = 1. Notably, since the likelihood

function is nonzero only for a very narrow f-range, applying the scale-invariant Jeffreys’ prior

would change the posterior only marginally. The prior for the protein structure Rj of state j
was taken from an unbiased MD simulation. Hence, π(Rj|K) is given by a Boltzmann factor of

the force field energy Vff, marginalized with respect to all solvent coordinates rsol (water and

ions), π(Ri|K)/
R

drsol exp[− βVff(Ri, rsol, K)]. Assuming no prior information on the weights,

π(w|K) was taken as a flat Dirichlet distribution. For the buffer density mismatch δρbuf, a

Gaussian prior was taken as pðdrbufÞ / exp ½� dr2
buf=ð2�

2
bufÞ�. Here, �buf is a free parameter that

quantifies the uncertainty of the density of an experimental buffer. Typical values for �buf

would be 0.1 to 0.5% of the density of water, yet we found that the choice for �buf had only a

small effect on p(R, w).

On-the-fly calculation of SAXS curves from MD simulations

The buffer-subtracted SAXS curves were derived by explicit-solvent calculations, as described

previously [18, 21]. Because the explicit solvent provides an accurate model for the hydration

layer and excluded solvent, these calculations did not require any solvent-related fitting

parameters, in contrast to implicit-solvent SAXS calculations.

In short, a spatial envelope was constructed around the protein at a distance of at least 8Å
from all protein atoms (Fig 1). All protein and solvent atoms within the envelope were taken

into account for the calculation of the SAXS curve, as visualized in Fig 1. Likewise, scattering

contributions from the excluded solvent were computed from solvent atoms within the enve-

lope taken from a pure-water MD simulation. A memory time constant of τ = 500 ps was

applied during both LBP and Hsp90 simulations. The orientational average (or spherical quad-

rature) was conducted numerically using 1200 q-vectors per absolute value of q, distributed by

the spiral method. During SAXS refinement simulations, the SAXS curves were updated on-

the-fly every 0.5 ps. The statistical uncertainty σc of the calculated intensity was computed by

applying standard Gaussian error propagation to the SAXS intensity calculations we described

previously [21]. After averaging over a few hundred MD frames, σc is typically small compared

to the other uncertainties that contribute to the likelihood function (σbuf and σexp).

The SAXS curves of the purely open and purely closed states of LBP (Fig 2, solid lines) were

computed from 100-nanosecond free simulations of the open and closed state.

Marginalizing out the fitting parameters f and c

The two fitting parameters f, corresponding to the absolute scale of the SAXS curve, and the

offset c, can be marginalized out analytically at the level of the likelihood. Assuming Gaussian

errors, we take for the likelihood

LðDjR;w; f ; c; drbuf ;KÞ / exp �
1

2
zw2

� �

ð5Þ

with

w2 ¼
PNq

i¼1 ti;f ½Icðqi;R;wÞ � ðfIexpðqiÞ þ cÞ�2; ð6Þ

where we introduced the symbol z = Nindep/Nq, as well as the precision of the ith q-point as

Bayesian structure refinement against SAXS data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005800 October 18, 2017 14 / 27

https://doi.org/10.1371/journal.pcbi.1005800


follows:

ti;f ¼
1

s2ðqiÞ
¼

1

f 2s2
expðqiÞ þ s2

cðqiÞ þ s2
bufðqi; drbufÞ

: ð7Þ

Here, we used that the uncertainties from the experiment σexp, from the calculation σc, and

from the buffer subtraction σbuf are independent, suggesting that the respective variances add

up to the total variance σ2(qi). The precision τi,f depends on the fitted scale f because the experi-

mental errors σexp must be scaled simultaneously with the experimental intensities Iexp. To

allow us to marginalize out the scale f analytically, we use that the errors in the small-angle

regime are much smaller than the intensities, suggesting that purely values of f close to it’s

maximum-likelihood estimate fml contribute to the marginalized likelihood. As a consequence,

replacing f by fml in eq 7 has only a small effect on the marginalized likelihood. We therefore

use for the precision in the following

ti ¼ ½f 2
mls

2
expðqiÞ þ s2

calcðqiÞ þ s2
bufðqi; drbufÞ�

� 1
: ð8Þ

In the first calculation step, while fml is still unknown, it may be simply estimated from

the non-weighted averages of the calculated and experimental intensities, following

fml� ∑i Ic(qi)/∑i Iexp(qi).

To keep the nomenclature clear, let us introduce additional symbols. Let T :¼
PNq

i¼1 ti

denote the sum over all precisions. The τ-weighted average over q-points is

hXi ¼ T � 1
XNq

i¼1

tiXðqiÞ: ð9Þ

With the last definition, the τ-weighted variances of the calculated and experimental SAXS

intensities are

s2
c ¼ hI2

c i � hIci
2 ð10Þ

s2
exp ¼ hI2

expi � hIexpi
2
; ð11Þ

respectively, and the τ-weighted Pearson correlation coefficient between the calculated and

experimental data points is

P ¼
hIc Iexpi � hIcihIexpi

sc sexp
: ð12Þ

The maximum likelihood estimates for the fitting parameters f and c are

fml ¼ P
sc

sexp
ð13Þ

cml ¼ hIci � fmlhIexpi; ð14Þ

respectively. The residual between Ic and Iexp that cannot be fitted by the parameters f and c is

ŵ2 ¼ T½s2
c � ðfmlsexpÞ

2
� ð15Þ

¼ Th½Ic � ðfmlIexp þ cmlÞ�
2
i: ð16Þ
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The last equality is derived using eqs 10 to 14. The likelihood Lmarg marginalized with respect

to fitting parameters f and c is obtained by integrating over f and c. Since no prior information

on f and c is available, we assumed flat prior distributions, π(f) = π(c) = 1. A straightforward

calculation yields:

Lmarg ðDjR;w; sbuf ;KÞ

/

Z

df
Z

dc LðDjR;w; f ; c;sbuf ;KÞpðf ÞpðcÞ

/
1

Tsexp
exp �

1

2
zŵ2

� �

ð17Þ

Here, we dropped the normalization factors and other constants of the likelihood because

these only lead to an irrelevant constant offset in the experiment-derived energies.

Force calculations

In order to sample the posterior distribution using Newtonian dynamics, Lmarg is reformulated

as its energy analogue

Eexp ¼ � b
� 1 ln Lmarg: ð18Þ

Using eqs 10 through 18, the experiment-derived force on atom ℓ of state j to is

Fj;‘ ¼ �
@

@rj;‘
Eexp ð19Þ

¼ � b
� 1

z
XNq

i¼1

ti IcðqiÞ � ðfmlIexpðqiÞ þ cmlÞ
h i @Icðqi;R;wÞ

@rj;‘
; ð20Þ

where rj,ℓ denotes the Cartesian coordinates of atom ℓ in state j (j = 1, . . ., N). In general, the

calculated SAXS intensity Ic is a weighted average over the intensities of the N states:

Icðqi;R;wÞ ¼
XN

j¼1

wjIðqi;RjÞ; ð21Þ

where wj and I(qi, Rj) denote the normalized weight (∑j wj = 1) and the SAXS intensity of state

j, respectively. Following eq 21, the derivative of Ic with respect to rj,ℓ depends purely on the

SAXS intensity of state j:

@Icðqi;R;wÞ
@rj;‘

¼ wj

@Iðqi;RjÞ

@rj;‘
: ð22Þ

Note that, for the simulations conducted in this study, one closed state (j = 1) was assumed to

adopt a fixed know structure, whereas a second open state (j = 2) was refined against SAXS

data. Hence, the forces Fj,ℓ were purely evaluated for the second flexible state. However, the

equations presented above are suitable for simultaneously refining multiple states against

SAXS data. The derivative @I(qi, Rj)/@rj,ℓ was computed as described previously [18, 21].
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Marginalizing out the scale f only

For the simulations of this study, we applied the likelihood function defined in eqs 5 and 6,

using both the absolute scale f and the constant offset c as unknown fitting parameters. How-

ever, there may be applications for which the fitting of a constant offset c is undesirable.

Hence, for the sake of completeness, we report the expressions for marginalizing out purely

the absolute scale f.
Then, the likelihood takes the form of eqs 5 and 6 with the parameter c set to zero. The max-

imum-likelihood estimate for the scale f evaluates to f 0ml ¼ hIc Iexpi=hI2
expi, and the residual

between Ic and Iexp changes to

ŵ0 2 ¼ TðhI2
c i � hIcIexpi

2
=hI2

expiÞ ¼ Th½Ic � f 0mlIexp�
2
i: ð23Þ

The marginalized likelihood is

L0marg /
1

½ThIexpi�
1=2

exp �
1

2
zŵ0 2

� �

; ð24Þ

and the force on atom ℓ of state j

Fj;‘ ¼ � b
� 1

z
XNq

i¼1

ti IcðqiÞ � fmlIexpðqiÞ
h i @IcðqiÞ

@rj;‘
: ð25Þ

Monte-Carlo moves for δρbuf and weights

The weights of the N states (N = 2 in this study), as well as the uncertainty of the buffer density

δρbuf were sampled using Gibbs sampling, that is, using Monte-Carlo (MC) moves with all

other parameters fixed. At each time step at which the SAXS intensities were updated (0.5 ps

in this study), 20 rounds of MC moves of δρbuf and wopen were conducted. In each round, 20

MC moves of δρbuf were conducted (at fixed wopen), followed by 20 MC moves of wopen (at

fixed δρbuf). Typical posteriors of the parameter δρbuf are shown in S3 Fig.

Proposed MC moves of δρbuf were taken from a uniform distribution in the interval [0,

6�buf). Proposed MC moves for the weight vector w = (w1, . . ., wN) were taken from a flat

Dirichlet distribution. Hence, proposed w satisfied
PN

i¼1
wi ¼ 1 and were uniformly distrib-

uted over the standard (N − 1)-simplex, that is, the prior π(w) was a constant. Such w were

drawn from the flat Dirichlet distribution by randomly partitioning the interval [0, 1], as

follows:

1. Take random numbers Ri (i = 1, . . ., N − 1) from a uniform distribution in the interval

[0, 1]. In addition, set R0 = 0 and RN = 1.

2. Sort the Ri in increasing order.

3. Take proposed weights as wi = Ri − Ri − 1.

We noticed that restricting the sampling of wi to the interval [0, 1] may lead to artifacts at

“edge” of the (N − 1)-simplex, presumably as a consequence of the weighted running averages

used for computing SAXS curves on-the-fly during MD simulations [18]. To avoid a boundary

in the physically relevant weights space, the sampled weight space was extended to unphysical

but mathematically well-defined weights slightly outside the (N − 1)-simplex (outside the

interval [0, 1] in case of N = 2). This was achieved by scaling the proposed weight vector w,
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followed by a shift along the vector with all elements equal to unity, j = (1, . . ., 1), as follows:

w0 ¼ ð1þ xNÞw � x j: ð26Þ

The parameter ξ was set to 0.1 in this study. This transformation keeps the prior of w0 uniform

on the (N − 1)-simplex, and it keeps the weight vector normalized (
PN

i¼1
w0i ¼ 1). However, it

allows one to draw samples of w0i from the interval [−ξ, 1 + Nξ − ξ]. For N = 2, for instance,

samples of w0i are drawn from the interval [−ξ, 1 + ξ].

The proposed MC move was accepted with probability Paccept according to the Metropolis

algorithm,

Paccept ¼ minf1; p0marg=pmargg; ð27Þ

where the prime indicates the posterior after the MC move. Further, the symbol pmarg denotes

the posterior distribution after marginalizing out the fitting parameters, which is given by

pmargðR;w; drbuf jD;KÞ / LmargðDjR;w; drbuf ;KÞpðRjKÞpðwjKÞpðdrbuf jKÞ: ð28Þ

For each MC move pmarg was evaluated using eq 17 as well as the priors for w (a constant in

this study) and π(σbuf) (a Gaussian in this study, see section on prior distributions).

Umbrella sampling along open/closed weights

Obtaining a (reasonably) converged posterior distribution as a function of weights and protein

coordinates would require very long simulations. To ensure exhaustive sampling of the weights

space and, hence, to accelerate the convergence of the posterior, we used umbrella sampling

along the weights [32]. Further, umbrella sampling is technically convenient because it allows

the calculation of the posterior from a set of independent simulations.

For the two-state refinement used here, one-dimensional umbrella sampling was sufficient.

Accordingly, the weight of the open state wopen was decomposed into Nwin = 11 umbrella win-

dows wðkÞopen ¼ f0; 0:1; . . . ; 1:0g (k = 1, . . ., Nwin). During MC moves of the weights, a harmonic

umbrella potential was applied V ðbÞk ¼ fwðwopen � wðkÞopenÞ
2
=2 or, equivalently, the MC moves

were accepted or rejected based on the biased posterior

pðbÞmarg;k ¼ pmarg e� bVðbÞk : ð29Þ

An umbrella force constant of fw = 1000 kJ/mol was applied. A typical set of umbrella histo-

grams is shown in S4 Fig, demonstrating sufficient overlap between neighboring histograms.

After the simulations had finished, the umbrella windows were combined to the unbiased

posterior using the weighted histogram analysis method (WHAM), as implemented in the

g_wham software [62, 63].

Schematic overview of the algorithm

Fig 7 visualizes the algorithm used to compute the posteriors. Accordingly, the simulation sys-

tem is set up from the initial coordinates R, and initial values for the weights w and the buffer

density mismatch δρbuf are defined. The system is freely simulated for τ (the memory time con-

stant for on-the-fly SAXS calculations [18]), using purely the MD force field Vff. The free simu-

lation is required is required because, using the explicit-solvent SAXS predictions, the SAXS

curve cannot be computed from a single frame but instead requires averaging over solvent

fluctuations. Within the free simulation, an initial estimate for the calculated SAXS intensity

Ic(qi, R, w) is obtained. A typical value for τ is 300 ps, suggesting that the computed SAXS
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curves account for fluctuations on the several hundred picosecond time scale. Subsequently,

the experiment-derived energy Eexp is gradually turned on within the following τ.

The following steps are repeated until the requested simulation time is reached for each

umbrella window along the weights: (i) MD simulation using forces derived from the hybrid

energy, i.e., using the potential Vff + Eexp; (ii) update of Ic(qi, R, w) based on the current MD

frame and using a cumulative weighted average [18], as previously suggested for NMR refine-

ment [64]; (iii) a few hundred MC moves of weights wi and δρbuf (see above); (iv) update

Ic(qi, R, w) with the final weights, and update the systematic error σbuf with the final δρbuf, as

described previously [18]. After the simulations from all umbrella windows have finished, the

biased posteriors from all windows are combined into the unbiased posterior using WHAM

[62].

Preparation of structures for MD simulations

The crystal structures of the apo and holo states of LBP were taken from the protein data bank

(PDB codes 1USG and 1USI [35]). For the simulation of Hsp90 the structure of ATP-bound

yeast Hsp90 was used (PDB code 2CG9) [36]. The co-chaperone proteins SBA1 and ATP

Fig 7. Overview of the algorithm used to compute the posteriors. For more details, see text.

https://doi.org/10.1371/journal.pcbi.1005800.g007
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ligands were removed from the structure of HspP90 and leucine ligand was removed from the

LBP structure. Flexible linkers missing in the Hsp90 crystal structure were added using Model-

ler [65]. A swap of the N-terminal β-strand (residues 1-9), which prevented the opening of the

protein, was removed using the Coot software [66].

The structures were placed in simulation boxes of a rhombic dodecahedron with distance

between the protein and the box surface of 1.5 and 4 nm for LBP and Hsp90, respectively. The

systems were solvated by explicit water. Sodium and chloride ions were added to obtain a salt

concentration of 100 mM. Here, the number of sodium and chloride ions was adjusted to neu-

tralize the system. The energies of the systems were minimized using the steepest descent algo-

rithm for 2000 steps. Subsequently, the systems were equilibrated with position restraints on

the backbone atoms for 10 and 20 ns for LBP and Hsp90, respectively.

To obtain an initial open structure of Hsp90, we carried out pulling simulations along the

distance of the two N-terminal domains. Accordingly, the center-of-mass distance between

the two N-terminal domains was increased from 4 nm to 8 nm within 40 ns, using a pulling

speed of 0.1 nm/ns. The obtained open structure was resolvated in a larger simulation

box with the distance between the protein and the box surface of 3 nm, and the structure was

equilibrated for another 20 ns with position restraints on the backbone atoms. The final struc-

ture was used as a starting structure for SAXS refinement. The Hsp90 system contained

approximately 1.5 × 106 atoms.

MD parameters

Standard MD simulations were performed using the GROMACS simulation software (version

4.6) [67]. All SAXS calculations were done with an in-house modification of GROMACS 4.6,

which is available from the authors upon request. Protein interactions of LBP and Hsp90 were

taken from the CHARMM27 and CHARMM22� forcefields, respectively [68, 69], and water

was modeled by the TIP3P potential [70]. Hydrogen atoms of the proteins were modeled as

virtual interaction sites allowing an integration timestep of 4 fs. Electrostatic interactions were

treated with the particle-mesh Ewald scheme [71, 72]. The cutoff of 1.2 nm was applied to the

direct-space Coulomb and Lennard-Jones interactions. The bond lengths and angles of water

molecules were constrained with the SETTLE algorithm [73], and all other bonds were con-

strained with LINCS [74]. The pressure was set to 1 bar using the Berendsen barostat (τ = 1 ps)

[75]. During equilibration runs, the temperature was controlled at 300 K with the Berendsen

thermostat (τ = 0.5 ps) [75]. During SAXS-driven simulations, in contrast, a tight stochastic

dynamics integration scheme was applied, motivated from the fact that SAXS-driven MD is

not strictly energy conservative [76].

SAXS refinement simulations

For LBP simulations, the target curves for the refinement were modeled from calculated SAXS

curves of the closed state Iclosed(q) (Fig 2C, solid dark blue curve) and open state Iopen(q)

(Fig 2C, solid light blue curve), as follows:

Iexp;wðqÞ ¼ wexp
openIopenðqÞ þ ð1 � wexp

openÞIclosedðqÞ ð30Þ

In this study, we tested ensemble refinement against SAXS data computed with the following

wexp
open: 0, 25%, 50%, 75%, or 100% (Fig 2C, solid and dashed curves). Hence, since Iexp,w(q) was

computed theoretically, the true weight of the open state was known, allowing us
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1. to validate that the SAXS-guided refinement starting from the closed state is capable of

reproducing the true weight (wexp
open) and the true structure of the open state (used to com-

pute Iopen(q)), and

2. to derive the uncertainty (or ambiguity) of the weight and structure in the light of the SAXS

curve and the MD force field, as given by the width of the posterior distributions.

All simulations of LBP were started from the closed state (Fig 2A). The simulations were

coupled to the target SAXS curve at Nq = 25 q-points, which were evenly distributed between 0

and 8 nm−1. The two-state ensemble refinement was conducted using umbrella sampling

along the weight wopen of the open state (see above). Each umbrella window was simulated for

40 ns, where the first 2 ns were removed for equilibration. The posterior distributions of wopen

and of the interdomain distance derived from these simulations are presented in Figs 2D, 3A

and S1A Fig.

For comparison, a single state (instead of the ensemble of two states) was refined against

each of the five curves Iexp,w(q), using five simulations of 10 ns each and removing the first 2 ns

for equilibration. S1B Fig presents the posteriors of the interdomain distance dNC resulting

from refining a single structure against SAXS curves that, in truth, represent heterogenous

open/closed ensemble. Notably, the single-state refinements try to explain those SAXS curves

with intermediate (partially open) structures.

For the refinement simulations of Hsp90, the simulations were coupled to the target SAXS

curve at Nq = 30 q-points, which were evenly distributed between 0.1 and 3 nm−1. The q-range

below 0.1 nm−1 was omitted because the experimental data exhibited some deviation from the

ideal Guinier behaviour. For some umbrella windows, Hsp90 was required to carry out large-

scale conformational transitions. To accelerate those transitions, each window was first simu-

lated for 8 ns with a ten-fold increased experiment-derived energy Eexp. Subsequently, the

simulation of each umbrella window was continued for another 20 ns using the statistically

founded Eexp that leads to the correct posterior (eq 18). From those simulations, the first 2 ns

were removed for further equilibration, and the remaining simulation time was used to com-

pute the posterior. An example of the umbrella histograms along the weight coordinate is

shown in S4 Fig. To further improve the sampling close to the maxima of the posteriors, the

simulations of the umbrella window at the peak of p(wopen|D, K) plus two neighboring win-

dows were prolonged for another 15 ns.

Supporting information

S1 Fig. Marginalized posteriors of the interdomain distance dNC of the refined open state,

taken from two-state and single-state refinement simulations of LBP. (A) Marginalized

posteriors of the interdomain distance dNC of the refined open state, taken from two-state

refinement simulations of LBP. In ensembles refined against SAXS curves of non-zero open-

state content (25:75 through 100:0), the posteriors peak near the physically correct dNC of

*3.25 nm of the open state. In the ensemble refined against the SAXS curve of purely the

closed state (0:100), the refined weight of the open state is near zero (Fig 3A of main text), sug-

gesting that the simulation of the open state is hardly restrained by the SAXS curve or, equiva-

lently, is essentially a free simulation. Consequently, the posterior of dNC (A, dark green) is

wide and reflects both closed and open states.

(PDF)

S2 Fig. Target SAXS curves (black lines) and calculated SAXS curves of the refined struc-

tures and ensembles (red dots) of leucine binding protein. (A/C) Two-state ensemble refine-

ment. (B/D) Single-state refinement. SAXS curves with open weight�25% were offset for
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clarity. The lower row (C/D) shows a close-up view on the small-angle regime.

(PDF)

S3 Fig. Posterior of δρbuf/�buf during two state refinement of LBP and Hsp90 refinement.

For LBP, the ensembles were refined against theoretically computed SAXS curves, thus exhib-

iting no buffer density mismatch, rationalizing why the posteriors peak near δρbuf = 0. For

Hsp90, in contrast, the ensembles were refined against experimental data that presumably

exhibit some systematic errors, for instance due to a small buffer density mismatch. Hence, the

posteriors peak at nonzero δρbuf.

(PDF)

S4 Fig. Example of umbrella histograms. Umbrella histograms along the weight of the open

state, here taken from the two-state refinement of LBP against the open/closed 50:50 SAXS curve.

(PDF)

S5 Fig. Root mean-square deviation (RMSD) analysis of LBP. Root mean-square deviation

(RMSDs) between the Cα atoms of (i) the refined open structure of LBP and (ii) the open LBP

structure (similar to Fig 2B). For the RMSD calculations, the open structure was taken as the

average structure of the ensembles used to compute the SAXS curve of the open state. Trajecto-

ries were taken from umbrella windows of wopen close to the peak of the posterior p(wopen|D,

K). The color indicates the open:closed weights used to compute the target curve (see legend,

five target curves in Fig 2C). The RMSD curves demonstrate that, starting from the closed

state, LBP rapidly opens and approaches the open structure. Some RMSD fluctuations after

longer time (green curves) reflect a smaller twist motion between the N- and C-terminal

domains within the open state. Such fluctuations along the twist are expected since, as shown

previously [18], the SAXS data restrains the degree of openness but not the twist.

(PDF)

S6 Fig. Analysis of the convergence of posterior distributions with increasing invested sim-

ulation time. (A/B) Marginalized posteriors for LBP refined against the SAXS curve with

50:50 open/closed weight (Fig 2D, middle panel), computed from time bins as indicated in the

legend. (A) Posterior of the interdomain distance dNC and (B) of the weight of the open state

wopen. (C) Marginalized posteriors of wopen for different liganded states of Hsp90 as indicated

in the legend. The thin lines indicate posteriors computed from an increasing number of histo-

grams: 10 equally spaced histograms, the same 10 plus additional three histograms near the

posterior maximum, 10 plus 6 additional histograms, and 10 plus 9 additional histograms near

the posterior maximum. The similarity between the posteriors suggest that the posteriors are

reasonably converged.

(PDF)

S1 Table. Maxima and confidence intervals of wopen, taken from p(wopen|D, K) of the two-

state ensemble refinement of LBP. All numbers in %. The respective posteriors are shown in

Fig 3A.

(PDF)

S2 Table. Maxima and confidence intervals of dNC, taken from p(dNC|D, K) of the two-state

ensemble refinement of LBP. During two-state refinement, in simulations with non-zero

wopen, the posterior of the interdomain distance p(dNC|D, K) of the open state peaks at the

physically correct dNC� 3.25 nm. The respective posteriors are shown in S1A Fig. All distances

are in nanometers.

(PDF)
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S3 Table. Maxima and confidence intervals of dNC taken from p(dNC|D, K) of the single-

state refinement of LBP. Refining a single state against SAXS curves that, in truth, represent a

heterogenous ensemble of open/closed states, yields posterior distributions that peak at the

“mean” interdomain distance hdNCi ¼ wopendopen
NC þ ð1 � wopenÞdclosed

NC , where dopen
NC and dclosed

NC

denote the mean interdomain distances of the open and closed states, in free simulations,

respectively. The respective posteriors are shown in Fig 1B. All distances are in nanometers.

(PDF)

S4 Table. Maxima and confidence intervals of wopen taken from p(wopen|D, K) of the two-

state ensemble refinement of Hsp90. All numbers in %. The respective posteriors are shown

in Fig 4D of the main text.

(PDF)

S1 Archive. Source code of modified version of gromacs which was used for SAXS-driven

MD simulations.

(BZ2)

S2 Archive. Setup files for the LBP two-state ensemble refinement.

(BZ)

S3 Archive. Setup files for the HSP90 two-state ensemble refinement.

(BZ)
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