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Supporting Material

PLS algorithm as a regularization scheme

In contrast to PCA-based FMA, partial least squares is an iterate procedure and the
resulting PLS estimator is highly non-linear inf . In the literature there are several versions
of the PLS algorithm available, which are, in fact, equivalg, as shown in (1). To keep the
notation simple, in the following we assume that botiX and f are centered. The idea of
the original algorithm of (2) (known as NIPALS) isto nd k p orthogonal n-dimensional

Thereby, weightsw; are chosen to maximize the empirical covariance between tHata f
and t;. We describe the construction of; following (3). The rst componentt; = Xw ; is
found solving

co(Xw ;f) wiX Hf EXw
Wi = arg max ————— = arg max ; (1)
w wtw W witw
which gives (up to a scalar)w, = X 'f . Further componentst; = Xw ; are found from
Eq. 1, subject to mutual orthogonality of allt;, j =1;:::;i 1. One possible way to do this
is to set
ti=Xw;=XX"'f T; (T} Ty 1) ‘T, f (2)

can write the partial least squares estimator of ordek for f as

k k
Pois = X "ols = XW (M= TN = Ti(TLTW) MTf (3)

a good intuition how the method works: one is looking for mutal orthogonal predictorst;,
that have the maximal covariance withf .

The ewMCM is the collective mode that, estimated from the gen structural ensemble,
has the highest probability to achieve a speci c alteratiorof the order parameter. From the
presented PLS de nition one can also easily verify why ewMCMeights are equivalent to
the scaledW ;. Simple algebra allows to rewrite the de nition of the ewMCMweights given
in Eq. 12 of (4) asW (W LX 'fvar 1(f's,s)=n: with ar(f s <) as the sample variance of
f K.s. Note that the rst basis vector W ; is given byw; = X 'f , while subsequent vectors
are chosen so that they are mutually orthogonal. Thus, in vear W (X 'f the rst element
equalsf 'XX 'f , whereas the others are zero, so that ewMCM weights result in

fIXX Uf

W, — o
mar(f'p s)

(4)
Another { non-iterative { formulation of PLS algorithm makes obvious the connection of
partial least squares to the conjugate gradient method. Itds been for a long time known,
see e.g., (5), that PLS is equivalent to the approximate sdion of (X 'X) ! = X'f
by the conjugate gradient method with early stoppingk. DenoteH = X 'X, s = X 'f,

k k
Pols = X "ol = XK W(KEXIXK ) K EX (5)



Early stopping

To understand the excellent predictive power of the PLS metd, it is pertinent to recall that
this algorithm has to be stopped at an early stagk, the dimension of the basis. Besides its
computational speed up this is necessary to avoid over ttop In fact, from Eq. 5 it becomes

obvious that as the iterationk increases,’\l;,LS converges essentially to the unrestricted least
squares t (X 'X) X 'f which overts the data and hence yields insu cient predictive
power. Hence, the iteration depthk serves as a regularization parameter, which has to be
chosen properly to terminate the algorithm. This early stoping phenomenon is well-known
for a variety of other learning algorithms, such as iterati# Tikhonov or boosting, see (6)
and (7), to mention a few. Recently, (8) could show that the P§ is able to obtain optimal
rates of reconstruction, if combined with an early stoppingule based on the discrepancy
principle. However, this rule merely is of theoretical intexst and it can hardly be employed
in practice because it nally depends on the unknown true pameter itself. Hence, for
practical purposes we suggest a cross-validation methodytield the optimal k.

Trp-cage unfolding

The Trp-cage is a 20 amino acid miniprotein designed by Neidiget al. (9) with a very short
folding time of 4 s. Here we applied FMA to identify unfolding pathways. Theref®, as
the functional property f we chose the hydrophobic solvent accessible surface (hSAStt
increases during unfolding. Protein atoms excluding hydgens were used to perform the
PLS- and PCA-based FMA analysis. This represents a particullgrchallenging case, rstly
because the hSAS is a highly non-linear function of the coondites and secondly because
we only use trajectory parts of the folded peptide for traimg the PLS- and PCA-based
FMA models, and assess the predictive power by cross-valigeg against initial unfolding
trajectories (4). The input trajectory was constructed sule that the training part consists
of a concatenation of folded trajectories of 100 ns combin&zhgth, and the cross-validation
part consists of a combination of initial unfolding trajecbries (100 180 ns).

Fig. S2, A and B show that the R,, converges to around 0.8 for PLS and to approx.
0.7 for PCA-based FMA. PLSR. converges to a vaue of around 0.6 after 20 components,
suggesting that a linear model can only partly describe theSAS, whereas atomic uctuations
that are not captured by the MCM substantially contribute to the hSAS. For PCA-based
FMA a maximum R; is reached at about 40 EVs, whereas for PLS-based FMA a basis of
dimensionality six yields the highest correlation in crosgalidation. Fig. S2,C and D show
the data and model for both the training and cross-validatio parts. 6 components and 40
PCA eigenvectors were used for the PLS- and PCA-based FMA ansiy, respectively. The
corresponding ewMCM are displayed in Figs. SE and F. Concerning the backbone, the
ewMCM of PLS- and PCA-based FMA show a similar opening motion,itth a scalar product
of 0.985 between the two ewMCMs.



References

1.

10.

Helland, I. S., 1988. On the structure of partial least sques regressionCommun. Stat.
Simulat. 17:581{607.

Hold, H. O. A.,, 1973. Nonlinear iterative partial least square$NIPALS) modelling:
some current developmentdn P. Krishnaiah, editor, Multivariate analysis 11, Academic
Press, New York, 383{407.

Kramer, N., A.-L. Boulesteix, and G. Tutz, 2008. Penalizecartial least squares with
applications to B-spline transformations and functional dta. Chemometr. Intell. Lab.
94:60{69.

Hub, J. S., and B. L. de Groot, 2009. Detection of functional ades in protein dynamics.
PLoS Comput. Biol. 5:1000480.

Manne, R., 1987. Analysis of two partial least squares alighms for multivariate cali-
bration. Chemometr. Intell. Lab.2:187{197.

Buhimann, P., and B. Yu, 2003. Boosting with the L2 loss: @gression and classi cation.
J. Am. Stat. Assoc. 98:324{339.

Bissantz, N., T. Hohage, A. Munk, and F. Ruymgaart, 2007. Conxgence rates of
general regularization methods for statistical inverse pblems and applications.SIAM
J. Numer. Anal. 45:2610{2636.

Blanchard, G., and N. Kramer, 2010. Optimal learning rate for kernel conjugate gradient
regression.In Adv. Neur. In. volume 23, 226{234.

Neidigh, J. W., R. M. Fesinmeyer, and N. H. Andersen, 2002. Desiggia 20-residue
protein. Nat. Struct. Biol. 9:425{430.

Fischer, G., U. Kosinska-Eriksson, C. Aponte-SantamaraM. Palmgren, C. Geijer,
K. Hedfalk, S. Hohmann, B. L. de Groot, R. Neutze, and K. LindkvisPetersson, 2009.
Crystal structure of a yeast aquaporin at 1.1 reveals a novel gating mechanisnPLoS
Biol. 7:€1000130.

Figure Legends

Figure S1.

Experimental ensemble prediction and tting structure e ect on PLS-based FMA method for
Glul1-Asp20 distancedgp) of T4 Lysozyme (T4L). (A) Scatter plot and linear regression of
the experimental vs. predicteddgp for 38 T4L x-ray structures. The PLS-based FMA model
was built as in Fig.1B using 10 components. §) Pearson correlation coe cients between
data and model for PLS-based FMA as function of the number of sponents calculated
for the model training subset black Ry,, 38 T4L x-ray structures) and the cross-validation
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subset fed, R, 4601 T4L MD frames). C) Cartoon representation of 3 T4L structures
(with 0.76, 1.01 and 1.24 nm otlgp) used to test the e ect of the tting structure on the
PLS-based FMA. D) Pearson correlation coe cients between data and model fd?LS-based
FMA as function of the number of PLS components calculated fahe model training (Ry)
and the cross-validation subsetsR.). The correlation coe cients were calcuted using the
reference structures oB. In the inset it is possible to observe the subtle di erence®r R,
among these PLS-based FMA models.

Figure S2.

Comparison of PLS- and PCA-based FMA for hydrophobic solventaessible surface (hSAS)
applied to Trp-cage folded trajectories. A/B ) Pearson correlation coe cients between data
and model for PLS/PCA based FMA as function of the number of PL&omponents/PCA
vectors calculated for the model training subsetblack R, folded trajectories) and the
cross-validation subset ried, R, initial unfolding trajectories). (C/D ) Overlay of data and
model for the hSAS as function of time. Theblack linescorrespond to the MD data, the
greento the model training subset andred to the cross-validation subset. The models were
calculated using 6 components for PLS-base@ | and 40 PCA vectors for PCA-based FMA
(D). (E/F ) Cartoon and stick representation of the ewMCM contributiig to the change in
the hSAS. The color-scaleréd-white-blug represents the interpolation between the extreme
projections along the ewMCMs. The PLS- and PCA-based FMA modelused to plot the
molecular representations have the same number of compotssor PCA vectors as the models
used in panelsC and D.

Figure S3.

Comparison of the PLS-based FMA and partial PCA analysis (10df the helices 4, 5, 6
and loop D of yeast Aquaporin (Aqyl). A) Backbone representations and overlay of the
modes along the rst PCA eigenvector ied) and the PLS-based FMA ewMCM plue). (B)
Comparison of the modes irA in terms of root mean-square uctuation. The color-scale
(blue-green-red and the line thickness represents the RMSF along the modes.

Figure S4.

Distribution of the E148 angle for doubly occupied CLC-eclmonomers atS.e, and Siy; .
The simulations corresponded toS;,; and Sge, restrained;S;,; restrained andS.e, free, and
free Sy and Scen. They show di erent proportions of the three peaks.
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