
Supporting Material
Partial least squares functional mode analysis

Tatyana Krivobokova1

Institute for Mathematical Stochastics and Courant Research Center PEG,
Georg-August-University G•ottingen, Germany

Rodolfo Briones1

Computational Biomolecular Dynamics Group,
Max-Planck Institute for Biophysical Chemistry, G•ottingen, Germany

Jochen S. Hub
Computational Molecular Biophysics Group

Dept. of Molecular Structural Biology
Georg-August-University G•ottingen, Germany

Axel Munk
Institute for Mathematical Stochastics,

Georg-August-University G•ottingen and Statistical inverse problems group,
Max-Planck Institute for Biophysical Chemistry, G•ottingen, Germany

Bert L. de Groot2

Computational Biomolecular Dynamics Group,
Max-Planck Institute for Biophysical Chemistry, G•ottingen, Germany

1equal contribution
2Corresponding author. Address: Computational Biomolecular Dynamics Group, Max-Planck

Institute for Biophysical Chemistry, Am Fassberg 11, 37077, G•ottingen, Germany. Tel.: +(49)551-
2012308, Fax: +(49)551-2012302



Supporting Material

PLS algorithm as a regularization scheme

In contrast to PCA-based FMA, partial least squares is an iterative procedure and the
resulting PLS estimator is highly non-linear inf . In the literature there are several versions
of the PLS algorithm available, which are, in fact, equivalent, as shown in (1). To keep the
notation simple, in the following we assume that bothX and f are centered. The idea of
the original algorithm of (2) (known as NIPALS) is to �nd k � p orthogonal n-dimensional
componentst 1; : : : ; t k , such that t i = X w i for somep-dimensional weightsw i , i = 1; : : : ; k.
Thereby, weightsw i are chosen to maximize the empirical covariance between thedata f
and t i . We describe the construction oft i following (3). The �rst component t 1 = Xw 1 is
found solving

w 1 = arg max
w

cov2(Xw ; f )
w tw

= arg max
w

w tX t f f tXw
w tw

; (1)

which gives (up to a scalar)w 1 = X t f . Further componentst i = Xw i are found from
Eq. 1, subject to mutual orthogonality of all t j , j = 1; : : : ; i � 1. One possible way to do this
is to set

t i = Xw i = XX t
�

f � T i � 1(T t
i � 1T i � 1)� 1T t

i � 1f
	

; (2)

for T i � 1 = ( t 1; : : : ; t i � 1), i = 2; : : : ; k. Hence, forW k = ( w 1; : : : ;w k) and T k = XW k , we
can write the partial least squares estimator of orderk for f as

bf
k

P LS = X �̂
k
P LS = XW k �̂ k = T k �̂ k = T k(T t

kT k)� 1T k f : (3)

This iterative de�nition (that is, t i obtained from (t 1; : : : ; t i � 1)) of the PLS algorithm gives
a good intuition how the method works: one is looking for mutual orthogonal predictorst i ,
that have the maximal covariance withf .

The ewMCM is the collective mode that, estimated from the given structural ensemble,
has the highest probability to achieve a speci�c alterationof the order parameter. From the
presented PLS de�nition one can also easily verify why ewMCMweights are equivalent to
the scaledW 1. Simple algebra allows to rewrite the de�nition of the ewMCMweights given
in Eq. 12 of (4) asW kW t

kX t f cvar� 1(f̂
k
P LS )=n; with cvar(f̂

k
P LS ) as the sample variance of

f k
P LS . Note that the �rst basis vector W 1 is given byw 1 = X t f , while subsequent vectors

are chosen so that they are mutually orthogonal. Thus, in vector W t
kX t f the �rst element

equalsf tXX t f , whereas the others are zero, so that ewMCM weights result in

W 1
f tXX t f

n cvar(f̂
k
P LS )

: (4)

Another { non-iterative { formulation of PLS algorithm makes obvious the connection of
partial least squares to the conjugate gradient method. It has been for a long time known,
see e.g., (5), that PLS is equivalent to the approximate solution of (X tX )� 1� = X t f
by the conjugate gradient method with early stoppingk. Denote H = X tX , s = X t f ,
K k = ( s; Hs ; : : : ;H k� 1s). Then, (1) has shown that

bf
k

P LS = X �̂
k
P LS = XK k(K t

kX tXK k)� 1K t
kX t f : (5)
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Early stopping

To understand the excellent predictive power of the PLS method, it is pertinent to recall that
this algorithm has to be stopped at an early stagek, the dimension of the basis. Besides its
computational speed up this is necessary to avoid over�tting. In fact, from Eq. 5 it becomes
obvious that as the iterationk increases,̂�

k
P LS converges essentially to the unrestricted least

squares �t (X tX )� 1X t f which over�ts the data and hence yields insu�cient predictive
power. Hence, the iteration depthk serves as a regularization parameter, which has to be
chosen properly to terminate the algorithm. This early stopping phenomenon is well-known
for a variety of other learning algorithms, such as iterative Tikhonov or boosting, see (6)
and (7), to mention a few. Recently, (8) could show that the PLS is able to obtain optimal
rates of reconstruction, if combined with an early stoppingrule based on the discrepancy
principle. However, this rule merely is of theoretical interest and it can hardly be employed
in practice because it �nally depends on the unknown true parameter � itself. Hence, for
practical purposes we suggest a cross-validation method toyield the optimal k.

Trp-cage unfolding

The Trp-cage is a 20 amino acid miniprotein designed by Neidigh et al. (9) with a very short
folding time of 4 � s. Here we applied FMA to identify unfolding pathways. Therefore, as
the functional property f we chose the hydrophobic solvent accessible surface (hSAS) that
increases during unfolding. Protein atoms excluding hydrogens were used to perform the
PLS- and PCA-based FMA analysis. This represents a particularly challenging case, �rstly
because the hSAS is a highly non-linear function of the coordinates and secondly because
we only use trajectory parts of the folded peptide for training the PLS- and PCA-based
FMA models, and assess the predictive power by cross-validating against initial unfolding
trajectories (4). The input trajectory was constructed such that the training part consists
of a concatenation of folded trajectories of 100 ns combinedlength, and the cross-validation
part consists of a combination of initial unfolding trajectories (100� 180 ns).

Fig. S2, A and B show that the Rm converges to around 0.8 for PLS and to approx.
0.7 for PCA-based FMA. PLSRc converges to a vaue of around 0.6 after 20 components,
suggesting that a linear model can only partly describe the hSAS, whereas atomic 
uctuations
that are not captured by the MCM substantially contribute to the hSAS. For PCA-based
FMA a maximum Rc is reached at about 40 EVs, whereas for PLS-based FMA a basis of
dimensionality six yields the highest correlation in crossvalidation. Fig. S2, C and D show
the data and model for both the training and cross-validation parts. 6 components and 40
PCA eigenvectors were used for the PLS- and PCA-based FMA analysis, respectively. The
corresponding ewMCM are displayed in Figs. S2,E and F. Concerning the backbone, the
ewMCM of PLS- and PCA-based FMA show a similar opening motion, with a scalar product
of 0.985 between the two ewMCMs.
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Figure Legends

Figure S1.

Experimental ensemble prediction and �tting structure e�ect on PLS-based FMA method for
Glu11-Asp20 distance (dED ) of T4 Lysozyme (T4L). (A) Scatter plot and linear regression of
the experimental vs. predicteddED for 38 T4L x-ray structures. The PLS-based FMA model
was built as in Fig.1B using 10 components. (B) Pearson correlation coe�cients between
data and model for PLS-based FMA as function of the number of components calculated
for the model training subset (black, Rm , 38 T4L x-ray structures) and the cross-validation
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subset (red, Rc, 4601 T4L MD frames). (C) Cartoon representation of 3 T4L structures
(with 0.76, 1.01 and 1.24 nm ofdED ) used to test the e�ect of the �tting structure on the
PLS-based FMA. (D) Pearson correlation coe�cients between data and model forPLS-based
FMA as function of the number of PLS components calculated forthe model training (Rm )
and the cross-validation subsets (Rc). The correlation coe�cients were calcuted using the
reference structures ofB. In the inset it is possible to observe the subtle di�erencesfor Rc

among these PLS-based FMA models.

Figure S2.

Comparison of PLS- and PCA-based FMA for hydrophobic solvent accessible surface (hSAS)
applied to Trp-cage folded trajectories. (A/B ) Pearson correlation coe�cients between data
and model for PLS/PCA based FMA as function of the number of PLScomponents/PCA
vectors calculated for the model training subset (black, Rm , folded trajectories) and the
cross-validation subset (red, Rc, initial unfolding trajectories). (C/D ) Overlay of data and
model for the hSAS as function of time. Theblack linescorrespond to the MD data, the
green to the model training subset andred to the cross-validation subset. The models were
calculated using 6 components for PLS-based (C) and 40 PCA vectors for PCA-based FMA
(D). (E/F ) Cartoon and stick representation of the ewMCM contributing to the change in
the hSAS. The color-scale (red-white-blue) represents the interpolation between the extreme
projections along the ewMCMs. The PLS- and PCA-based FMA models used to plot the
molecular representations have the same number of components or PCA vectors as the models
used in panelsC and D.

Figure S3.

Comparison of the PLS-based FMA and partial PCA analysis (10)of the helices 4, 5, 6
and loop D of yeast Aquaporin (Aqy1). (A) Backbone representations and overlay of the
modes along the �rst PCA eigenvector (red) and the PLS-based FMA ewMCM (blue). (B)
Comparison of the modes inA in terms of root mean-square 
uctuation. The color-scale
(blue-green-red) and the line thickness represents the RMSF along the modes.

Figure S4.

Distribution of the E148 	 angle for doubly occupied CLC-ec1monomers atScen and Sint .
The simulations corresponded to:Sint and Scen restrained;Sint restrained andScen free, and
free Sint and Scen. They show di�erent proportions of the three 	 peaks.
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