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Methods

SAXS experiment

The SAXS curve of the DDM micelle were taken from a recent study.1 Details of sample

preparation and data collection are provided in Ref. 1. For the purpose of this work, the

experimental SAXS curve was smoothed using the default options of GNOM software.2
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SAXS curves for triaxial ellipsoid models

Detergent micelles have previously been modeled as two-component ellipsoids of revolution,

i.e. ellipsoids with two density contrasts for tails and headgroups, and with only two indepen-

dent semiaxes (prolate/oblate ellipsoids).3 These calculations can be generalised to a general

triaxial ellipsoid, and/or to models composed of N instead of two concentric shells. Here, the

N shells are constructed by superimposing N ellipsoids. Each of the N ellipsoids is defined

by three semiaxes ai, bi and ci, the volume Vi =
4

3
π ai bi ci, and by the solvent-subtracted

electron density ρi, where i = 1, . . . , N . The semiaxes are denoted in decreasing order, for

instance a1 > a2 > . . . > aN . Following the Eqs. 55, 57, and 62 of Ref. 4, the scattering

intensity of the N -component triaxial ellipsoid is given by:

I(q, a1, . . . , aN , b1, . . . , bN , c1, . . . , cN) =
2

π

π/2∫
0

π/2∫
0

F 2
3 (q, r1, . . . , rN) sinα dα dβ (S1)

where

ri(ai, bi, ci, α, β) =
[
(a2i sin2 β + b2i cos2 β) sin2 α + c2i cos2 α

]1/2
. (S2)

Here,

F3(q, r1, . . . , rN) = ρ1V1F1(q, r1) +
i=N∑
i=2

(ρi − ρi−1)ViF1(q, ri) (S3)

is the scattering amplitude of an N -shell ellipsoid, and

F1(q, ri) =
3 [sin(qri)− qri cos(qri)]

(qri)3
. (S4)

For the two-component triaxial ellipsoid (with only two shells), Eq. S3 simplifies to

F̃3 = ρ1V1F1[q, r(a+ t, b+ t, c+ t, α, β)] + (ρ2 − ρ1)V2F1[q, r(a, b, c, α, β)], (S5)

2



Here, the hydrophobic core is described as a triaxial ellipsoid with semiaxes a, b, c (Fig. 1B,

purple region) with electron density ρcore. The headgroup region has a constant thickness

t along the three axes (Fig. 1B, yellow region) and electron density ρhg. Accordingly, the

parameters in Eq. S5 are given by ρ1 = ρhg − ρsol, ρ2 = ρcore − ρsol, V1 =
4

3
π(a + t)(b +

t)(c+ t), and V2 =
4

3
πabc. We validated numerically and analytically that the mathematical

expressions shown above reduce to the expression for a two-component ellipsoid of revolution

(oblate/prolate) used by Lipfert et al.3

The computed scattering intensity is sensitive to the electron densities, suggesting that

reasonably accurate electron density estimates are required. For the density of the hydropho-

bic core and the headgroup region at the temperature of 15◦C we used ρcore = 279.8 e nm−3

and ρhg = 520.5 e nm−3. These values were determined taking into the account that: (i)

electron densities of the core and headgroup region at 25◦C are 277 e nm−3 and 520 e nm−3,

respectively;3 (ii) the density of the DDM detergent at 15◦C is increased by 0.56% compared

to 25◦C;5 (iii) the density of the alkyl tails at 15◦C is increased by 1.02% compared to 25◦C,

as estimated by the temperature dependence of the density of alkanes with similar chain

length.6 The solvent density was set to ρsol = 336.7 e nm−3 to match the electron density of

the 150mM NaCl aqueous solution at the temperature of 15◦C.

The thickness of the headgroup region, t, was determined once to 0.55 nm by fitting

the general triaxial ellipsoid to the data. This value is close to the value of t = 0.6 nm, as

previously determined by fitting a ellipsoid of revolution (prolate/oblate) at the temperature

of 25◦C.3 It was shown previously that modulating t in the range of 0.6 nm to 0.63 nm or using

different headgroup thicknesses hardly influence the fits to the experimental data in the case

of two-axial ellipsoids.3 Likewise, we found here that small modulations of t along the three

axes hardly influences the fits in the case of a general triaxial ellipsoid and hardly influences

the results from modeling shape fluctuation. Therefore, in all follow-up calculations with

the ellipsoid model, the value of t = 0.55 nm was used.

The smeared out electron density was modeled using an N -component triaxial ellipsoid,
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where N = 200 was used. The density profiles along the three axes were obtained by

convoluting the piecewise constant density (corresponding to a two-component ellipsoid) with

a Gaussian filter with σ = 0.2 nm (inset in Fig. 3A). Using this filter, the smoothed density

profiles were qualitatively similar to the density profiles determined from MD simulations.5

The largest semiaxes of the N -component triaxial ellipsoid was chosen such that Gaussian

tails up to 3σ of the smoothed density were taken into account.

MD simulations and SAXS calculations

MD setup and simulation parameters Unbiased, free simulations were carried out

similar to previous work.5 In short, detergent, water and ion interactions were modeled us-

ing CHARMM36 lipid force-field7 and CHARMM-modified TIP3P water.8 Free simulations

were carried out with GROMACS 2018.3.9 If not stated otherwise, the micelle was solvated

in a 150mM NaCl aqueous solution.10 Likewise, a 150mM NaCl solution was simulated as

pure-solvent system. The temperature was controlled at 15◦C to match the experimental

conditions using velocity rescaling11 (τ = 1 ps). The pressure was controlled at 1 bar using

the Berendsen barostat12 (τ = 5ps). Electrostatic interactions were calculated using the

particle-mesh Ewald method.13,14 Dispersive interactions and short-range repulsion were de-

scribed together by a Lennard-Jones potential with a cutoff at 1.2 nm. Length of the free

simulations, with and without added salt were 500 ns. The convergence of the free simulation

ensemble was validated by comparing SAXS curves computed from 50-nanosecond blocks of

the trajectory. The first 50 ns of all free simulations were removed for equilibration.

Explicit-solvent SAXS curve predictions SAXS curves were calculated using explicit-

solvent SAXS predictions described previously.15 Explicit solvent atoms contributing to the

SAXS curve were defined by a spatial envelope. Here, the envelope was constructed at a

distance of at least 1 nm from all detergent atoms in all frames of an equilibrium simulation.

Because the micelle heavily fluctuates, this procedure led to the distance of ∼2 nm between
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micelle and envelope in most frames. The same envelope was used for all SAXS-driven

simulations. The SAXS curve was calculated using the positions of atoms inside the envelope

each 10 ps. Scattering amplitudes were computed using 1200 q-vectors per q-point, which

were distributed by the spiral method. Because the TIP3P solvent density differs from the

experimental value, we corrected the solvent density to 335.7 e nm−3, corresponding to a

150mM NaCl solution, following the procedure described previously.15

SAXS-driven MD simulations The initial configurations of SAXS-driven simulations

was taken from free simulations. In the case of parallel-replica simulations, frames for the

replicas were taken from free MD snapshots at 5-nanosecond intervals. Apart from using

150mM NaCl aqueous solution instead of pure-water solution, single-replica SAXS-driven

simulations16 were performed as described previously.5 Details of the recently developed

multi-replica SAXS-driven simulations, following the principle of maximum entropy, are

described in Ref. 17. In all single-replica and parallel-replica simulations, the temperature

was controlled at 15◦C using a stochastic dynamics integrator (τ = 0.2 ps). To validate

that the refined ensembles are reproducible, we ran multiple independent simulations for

each setup of 1, 2, 4, 10 or 20 replicas. The number of independent runs, the applied force

constant used to couple the simulation to the data, and total simulation times are listed in

Table S1. Further, we excluded that the memory time τ used for on-the-fly averaging of the

SAXS curve16 has a significant effect on the refined ensembles. We found that the choice for τ

between 100 ps and 500 ps did not influence the calculated SAXS curve or semiaxes. Here, for

all the production runs, we used τ = 200ps. During the first 5 ns of SAXS-driven simulations,

the SAXS-derived forces were gradually switched on, and the first 8 ns of all SAXS-driven

simulations were omitted from the analysis for equilibration. In contrast to previous work,5

the overall scale f and a constant offset c of the experimental curve were marginalized out

on-the-fly during the SAXS-driven simulations. As shown previously,18 marginalizing out f

and c (in a Bayesian sense) is equivalent to adjusting f and c at each step to the value that
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Table S1: Number of independent simulations Nruns, force constant kc and simulation time
per replica Tsim (after removing 8 ns for equlibration) for a runs with 1, 2, 4 10 and 20 replicas

# of replicas kc Nruns Tsim

1 12 20 450
2 5 8 460
4 3 4 290
10 1 and 0.5 6 340
20 0.5 4 190

leads to the smallest biasing energy. Without adjusting the constant c, we did not achieve

good agreement between calculated and experimental curve at wider angles, possibly owning

to a small buffer subtraction uncertainty. Critically, the adjusted value of f and c values

were nearly identical among all SAXS-driven MD simulations, suggesting that f and c were

not overfitted. After the SAXS-driven simulations had finished, we computed the SAXS

curve from the entire refined ensemble. To compare this ensemble-averaged calculated curve

with the experimental curve, a constant set of f and c was applied throughout this study

(f = 7.62433× 107, c = −22883e2), motivated from the fact that the adjusted f and c were

highly similar in all SAXS-driven simulations.

Calculations of semiaxes and shape averages. In our previous work, semiaxes of the

hydrophobic core (a, b, c) were calculated from the density profiles of the hydrophobic core.5

This procedure requires averaging over a few nanoseconds for obtaining reasonable estimates

of a, b, c. However, for obtaining distributions along a, b, c as derived here, instantaneous

values for a, b, c are required. Hence, we estimated the instantaneous a, b, c from the

instantaneous moments of inertia (MOI) of the micelle, while assuming an ellipsoidal shape.

We found that a, b, c calculated from the MOI are systematically larger by ∼ 0.2 nm as

compared to the values calculated from the density profiles reported previously.5
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The MOI of a triaxial ellipsoid of mass m and semiaxes a, b and c are given as:

Ia =
m

5
(b2 + c2)

Ib =
m

5
(a2 + c2)

Ic =
m

5
(a2 + b2)

(S6)

From the MOI, semiaxes of the triaxial ellipsoid can be calculated as:

a =

(
5

2m
(Ib + Ic − Ia)

)1/2

b =

(
5

2m
(Ia + Ic − Ib)

)1/2

c =

(
5

2m
(Ia + Ib − Ic)

)1/2

(S7)

To compute semiaxes from MD simulations, we first computed the three MOI of the micelle

core every 10 ps using the GROMACS tool gmx principal. Assuming that the density of the

core can be approximated by the ellipsoid of uniform density, the semiaxes were computed

using Eqs. S7, and the distributions were computed from the refined ensemble.

Modeling shape fluctuations. For modeling shape fluctuations, samples of a, b, c, were

drawn from the respective distributions. Here, we drew the samples from the one-dimensional

distributions of a, b, c, thereby neglecting correlations between the semiaxes. To ensure that

all semiaxes samples model a micelle with a constant volume, we normalized each drawn set

(a, b, c) via

ãi = ai

(
〈V core〉
V core
i

)1/3

b̃i = bi

(
〈V core〉
V core
i

)1/3

c̃i = ci

(
〈V core〉
V core
i

)1/3

(S8)

7



0 2 4 6

q [nm
-1

]

10
5

10
6

10
7

In
te

n
s
it
y
 [

e
2
]

Normalized, constant density

Normalized, smoothed density

Unnromalized, constant density

Unnormalized, smoothed density

Figure S1: SAXS curves computed from the two-component triaxial model. The density
profiles were taken as piecewise constant (green line) or smoothed with a Gaussian filter
(yellow curve). Samples of normalized and not normalised sets of semiaxes are taken from a
100 ns four-replica simulation.

where V core
i = 4π ai bi ci /3 is the volume of the ellipsoid with semiaxes ai, bi, ci. The mean

volume was taken as 〈V core〉 = 4π 〈a〉 〈b〉 〈c〉 /3, where 〈·〉 denotes the average over the respec-

tive refined ensemble. 〈V core〉 differed only marginally from 4π 〈abc〉 /3. Subsequently, the

SAXS curve was computed using the analytic model of the triaxial ellipsoid using the nor-

malized set of semiaxes (ã, b̃, c̃), and the SAXS curves were averaged. Notably, the correction

of the semiaxes via Eqs. S8 had only a marginal effect on the SAXS curves (Fig. S1). Errors

were computed as 1SEM using only independent multi-replica simulations as independent

data points, providing a conservative error estimate.

Supporting Information Discussion

Notes on force field imperfections

During all ten-replica simulations, the micelle in one of the replicas adopted an unexpected

horseshoe shape, leading to slightly larger value for the large semiaxis a (Fig. S3). Consistent
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with this observation, the micelle in two of 20 replicas adopted a horseshoe shape during

twenty-replica simulations. With fewer replicas, no such horseshoe shapes were observed.

Although we can not strictly exclude that such shapes occasionally exist under experimental

conditions, we speculated that either (i) unknown systematic errors in the data, (ii) overly

restrained ensembles, or (iii) force field imperfections may be responsible for such occasional

shapes.

To shed more light on these observation, additional test simulations were carried out.

First, motivated by the fact that the experimental curve exhibits some uncertainty around

the pronounced minimum (q ≈ 1 nm−1), we performed two addition sets of refinement sim-

ulations using target SAXS curves, whose error was increased by factors of 3 or 5 in the

q-region between 0.85nm−1 and 1.25 nm−1, leading to strongly reduced weights in this q-

region. However, also in these additional simulations, the horseshoe shapes were reproduced

in one out of ten replicas, suggesting that the relatively high uncertainty at the q ≈ 1 nm−1

region does not cause the horseshoe shapes. Second, we performed series of test simula-

tions with weaker coupling to the experimental curve, by reducing the force constant (kc).

Only with very low kc = 0.1, the horseshoe shape vanished, but now the agreement to the

experimental data was significantly reduced.

Taken together, it seems unlikely that systematic experimental errors induced the horse-

shoe shapes, or that the simulations were overly restrained to the data. Instead, we hypoth-

esise that, with increasing number of replicas, and hence an increasing number of degrees of

the freedom, ensemble refinement becomes more sensitive to force-field imperfections. Hence,

ensemble refinement, as conducted here, is also a starting point for future developments of

soft matter force fields.

To exclude that the occasional horseshoe shape influences the conclusions of this manuscript,

we report results from four-replica simulation, in which no horseshoe shapes were observed,

along with results from ten-replica simulations. The distributions of a, b, c were similar in

four- and ten-replica simulations (except for contributions from the horseshoe-shaped mi-
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celles, Fig. S3), and the mean values of a, b, c are nearly identical. This suggests that the

key conclusions were not affected by the force field imperfections.

Note on solvent simulations

All SAXS-driven simulations were conducted in 150mM NaCl solution, while the SAXS

experiment was performed in pure water solvent. To exclude that the details of the solvent

influence the conclusions of this study, we repeated the key simulations with the DDM

micelle in pure-water solvent. In addition, to exclude that the solvent density affects the

calculations with the two-component model, we repeated the fits with the two-component

model assuming a solvent density of 334.7 e nm−3 to match the electron density of water at

15◦C.1 The fitted parameters, as shown in Table S2, are nearly identical to the results found

with the 150mM NaCl solution (Table 1).

Table S2: Average semiaxes calculated from multi-replica SAXS-driven MD simulations (top
rows) and from fitting two-component ellipsoid models (bottom rows), here assuming pure-
water solvent. Errors of a, b, c were computed using block averaging with 4 ns blocks or
estimated as 1 SEM of averages between independent runs, and errors were typically smaller
than 0.03 nm.

All-atom MD
# of replicas a [nm] b [nm] c [nm] t [nm]

1 3.30 2.30 1.66
4 3.19 2.38 1.68
8 3.19 2.43 1.66
24 3.19 2.43 1.69

Two-component model
prolate (unlikely) 3.40 1.99 1.99 0.55

oblate 2.85 2.85 1.60 0.53
triaxial 3.22 2.48 1.66 0.53
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The shape of the P (r) function is determined by a cancellation be-

tween positive tail-tail, head-head, and negative tail-head contribu-

tions

To obtain a qualitative understanding of contributions to the P (r) functions, we com-

puted pair distance distribution functions (PDDFs) with the GROMACS module gmx rdf

-nonorm. PDDFs were computed (i) between all pairs of tail atoms, (ii) all pairs of head

group atoms, and (iii) between tail and head group atoms (Fig. S2A), derived from a four-

replica simulation. Because gmx rdf normalizes the result by the number of atoms in a

reference group (to obtain by default the radial distribution function, RDF), the PDDF was

obtained from the gmx rdf output by scaling with the respective number of atoms (4995

and 5940 for tails and head groups, respectively). These PDDFs translate into contributions

to the P (r) function by taking the negative electron density contrast of the tail region ∆ρt

(relative to bulk water) and the postive contrast of the head group region ∆ρh into account,

following

Pij(r) = M · PDDF(r)∆ρi∆ρj, (S9)

where (i, j) = (t, t), (i, j) = (h, h), or (i, j) = (t, h), and t and h denote tails and head

groups, respectively. The prefactor M = 2 was used for (i, j) = (t, h) and M = 1 otherwise,

to account for the correct number of pairs of atoms. This analysis provides only qualitative

insight into P (r) contributions because (i) it neglects contributions of water atoms, which

add to the contrast of the head group region, and (ii) the volume per atom is not easily

obtained, implying that accurate values for ∆ρt and ∆ρh are not available. As such, the

analysis of P (r) in this paragraph does not follow the same quantitative rigor as our explicit-

solvent SAXS calculations, since the latter fully account for hydration and correct atomic

volumes.

Nevertheless, this simple analysis reveals the origin of the two pronounced peaks in the

experimental P (r) function (Fig. S2B). Because the relative magnitudes of the three Pij(r)
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Figure S2: (A) Pair distrance distribution functions (PDDFs) of tail atoms (black), head
group (HG) atoms (dark yellow), and between tail and head group atoms (orange), computed
from a SAXS-restrained ensemble simulation of the micelle. (B) Estimated contributions
of the three PDDFs to the P (r) functions weighted by the electron density contrast per
atom of the tail region (∆ρt) and of the head group region (∆ρh) into account. Assuming
∆ρt/∆ρh = −0.38, yields an overall P (r) function (blue) in reasonable agreement with the
experimental P (r).

functions are determined by the ratio ∆ρt/∆ρh, the shape of the overall Psum(r), as given by

Psum(r) = Ptt(r) + Pth(r) + Phh(r), (S10)

is likewise determined by ∆ρt/∆ρh. Using a least-square minimization, we found that

∆ρt/∆ρh = −0.38, yields an overall Psum(r) in favorable agreement with the experimental

P (r) (Fig. S2B, blue and red curve). Notably, the optimized ratio of ∆ρt/∆ρh is reasonable

in the light of the densities that we computed previously from MD simulations;5 a quantita-

tive comparison of densities would not be meaningful here since the present analysis neglects

water contributions to the head group region.

Critically, the maxima in the overall P (r) function do not appear in any of the individual

Pij(r) functions. Instead, the two maxima and the minimum of P (r) emerge by a cancellation

between the postive Ptt(r) and Phh(r) with the negative Pth(r) (Fig. S2B, black, yellow, and
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orange curves, respectively). This suggests that the lack of short-range structure in the two-

component continuum model, as evident from the smeared out P (r) curve at short distances

(Fig. 4), can not be attributed to a lack of structure in a specific micelle region (head groups

or tails). Hence, it is difficult to conclude from the P (r) functions which property of the

two-component continuum model should be improved to better match the experiment at

wider angles.
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Supporting figures
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Figure S3: Distributions of semiaxes in simulations with 10 or 20 replicas, see legend. During
these simulations, the micelle adopted in one of ten replicas a horseshoe shape. See SI Text
for further discussion. Further, the agreement among the ten- and twenty-replica simulations
suggests that 10 replica are sufficient to achieve a minimally biased ensemble.
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Figure S4: Distributions of semiaxes, calculated from a four-replica SAXS driven simulation
(yellow) or free a MD simulation (red). Evidently, the three axes are slightly more similar
in free as compared to SAXS-driven simulations, corresponding to a slightly too spherical
shape.5

0 2 4 6

q [nm
-1

]

10
5

10
6

10
7

In
te

n
s
it
y
 [
e

2
]

Experiment

two-component ellipoids

N-component ellipsoids

0 2 4 6 8

r [nm]

0

10
5

10
6

P
(r

) 
[a

.u
.]

A B

Figure S5: (A) SAXS curve computed as an average of sets of two-component triaxial ellip-
soids (blue), or of N -component triaxial ellipsoids with smoothed electron densities around
the headgroup region (green). Both models exhibit poor agreement with experimental data
(red) at wider angles, suggesting that modeling of atomic details is mandatory at wide angles.
Here, the sets of semiaxes were taken from ten-replica MD simulations. Curves calculated
with semiaxes from four-replica simulations are nearly identical and shown in Fig. 3.
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Figure S6: Pair-distance distribution functions P (r) with the representative errors, obtained
from the experimental SAXS curve, from MD-derived SAXS curves, or from curves of fit-
ted oblate, prolate and triaxial models (see legend for color code). The P (r) curves were
computed using GNOM2 with default settings. The parameter for the maximum diameter
(Dmax) of the particle was taken from the MD frames or from the fitted structural mod-
els. P (r) from experiment and from four-replica MD agree favorably. The small deviations
between experiment and ten-replica MD at r ∼ 4.5 nm is a consequence of the horseshoe-
shaped micelle in one of ten replicas, see SI Text for discussion and Fig. S3. P (r) from the
fitted triaxial ellipsoid give a reasonable agreement to experiment at r > 3 nm, while P (r)
from prolate/oblate fits reveals major discrepancies to the experiment.
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Figure S7: SAXS curves computed from four-replica SAXS-driven simulations (A and B) and
ten-replica SAXS-driven simulations (C and D), using only q-intervals of the experimental
curve as a target. The applied q-ranges are indicated in the legends. Representative symbols
with the same colors codes are shown to guide the eye.
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Figure S8: On the convergence of shape fluctuations: Distributions of semiaxes, calculated
from a 25 ns of a single four-replica SAXS driven simulation (yellow) and from 290 ns of
a four combined four-replica SAXS driven simulation (red). The similarity of distribution
suggests that the shape fluctuations are reasonably converged in our simulations.
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