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ABSTRACT: Various biophysical processes involve the formation of aqueous pores over lipid membranes, including processes
of membrane fusion, antimicrobial peptide activity, lipid flip-flop, and membrane permeation. Reliable and efficient free-energy
calculations of pore formation using molecular dynamics simulations remained challenging due to the lack of good reaction
coordinates (RCs) for pore formation. We present a new RC for pore formation that probes the formation and rupture of a
continuous polar defect over the membrane. Potential of mean force (PMF) calculations along the new RC rapidly converge and
exhibit no hysteresis between pore-opening and pore-closing pathways, in contrast to calculations based on previous RCs. We
show that restraints along the new RC may restrain the system tightly to the transition state of pore formation, rationalizing the
absence of hysteresis. We observe that the PMF of pore formation in a tension-free membrane of dimyristoylphosphatidylcholine
(DMPC) reveals a free-energy barrier for pore nucleation, confirming a long-hypothesized metastable prepore state. We test the
influence of the lipid force field, the cutoff distance used for Lennard-Jones interactions, and the lateral membrane size on the
free energies of pore formation. In contrast to PMF calculations based on previous RCs, we find that such parameters have a
relatively small influence on the free energies of pore nucleation. However, the metastability of the open pore in DMPC may
depend on such parameters. The RC has been implemented into an extension of the GROMACS simulation software. The new
RC allows for reliable and computationally efficient free-energy calculations of pore formation in lipid membranes.

■ INTRODUCTION

The formation of polar defects in lipid membranes plays an
important role in various biophysical processes. Antimicrobial
peptides act via formation of aqueous pores in membranes.1

During membrane fusion, the hemifused state progresses to the
fusion pore via the formation of a polar defect.2,3 Pore
formation provides a mechanism for programmed cell death
triggered by the immune response.4 In addition, membrane
electroporation is an established method for transferring
various types of material across membranes, such as RNA
and vaccines, with applications in cell biology and medicine.5,6

Over the last years, molecular dynamics (MD) simulations
have provided detailed mechanistic insight into pore formation.
Pores were induced in silico by applying surface tension7,8 or
electric fields,6,9,10 by enforcing lipid flip-flop,11−14 by steering
the lipids laterally from the defect,15−17 or by pulling water18 or
ions into the membrane.19 Pores are believed to form first by
the penetration of a thin water needle into the membrane,
followed by tilting of lipids parallel to the membrane to avoid

unfavorable contacts of water with the apolar membrane
interior.6,7,13

The free energy landscape of pore formation, however, has
remained controversial. Nearly 40 years ago, Abidor et al.
hypothesized the existence of a metastable prepore state,20

stabilized because closing of a pore requires to reorient the
tilted lipids back to an upright position. Under membrane
tension, Zhelev and Needham reported long-lived large pores
with a radius of ∼1 μm,21−23 stabilized by nonequilibrium
solvent flow through the pore.24 Computationally, metastable
pores were reported from simulations of stretched mem-
branes.25 In tension-free membranes, in contrast, a pore
nucleation barrier, as required to rationalize a metastable
pore, was not resolved in the potential of mean force (PMF) of
pore formation.16,26 This finding is in contrast to recent reports
of long-lived pores in simulations of a dimyristoylphosphati-
dylcholine (DMPC) membrane.26 Apart from such discussions
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on pore formation in pure-lipid systems, calculations on the
effect of membrane-active compounds, such as antimicrobial
peptides, on the free energies of pore formation have remained
difficult.27 Such uncertainties are partly a consequence of the
lack of good reaction coordinates for pore formation, as
discussed in the following.
PMF calculations are a standard method for obtaining the

energetics along functionally relevant transitions in biomolec-
ular systems, such as pore formation in membranes. PMF
calculations require the definition of one or multiple reaction
coordinates (or order parameters), yet identifying good
reaction coordinates (RCs) for complex transitions is often
far from trivial.28,29 However, problems may arise when using
unsuitable RCs, as illustrated in Figure 1. A hypothetical free

energy landscape is shown as contour lines in Figure 1A,
exhibiting two valleys, named state A and state B, respectively,
connected by a saddle point (or transition state, TS). Similar
landscapes have been discussed before.28,30 The minimum free
energy path (MFEP) connecting states A and B (Figure 1A, red
arrow) leads over the transition state and reveals a free energy
barrier separating states A and B (Figure 1B, red curve). From a
good RC one would expect: (i) The PMF along the RC should
at least resemble the MFEP and exhibit the free energy barrier.
(ii) Under nonequilibrium conditions, upon slowly pulling the

system along a good RC from state A to state B or back from
state B to state A, the system should more or less follow the
MFEP. Here, “slow” refers to time scales accessible in an MD
simulation. Properties i and ii would be fulfilled if restraints
applied along the RC are capable of restraining the system close
to the transition state.
When using a poor reaction coordinate as indicated by the

black horizontal arrow in Figure 1A, the desirable properties i
and ii may be violated. First, if the barrier is crossed orthogonal
to the RC in phase space, the barrier is integrated out upon
computing the PMF (Figure 1B, black curve). Hence, the PMF
would not reveal that state B is metastable. In the context of
membrane simulations, related problems have been discussed
in detail by Neale and co-workers, who referred to such
integrated out barriers as “hidden barriers”.31,32 Yet a second
more practical problem may arise as a consequence of finite
simulation time: upon pulling the system under nonequilibrium
conditions along the poor RC, the system might not properly
sample states A and B. For instance, starting in state A, the
system may miss the transition state and instead be pulled up
the valley of state A to states of increasing free energy, until the
system eventually falls into state B (Figure 1A, blue solid
arrow). Hence, the system may be perturbed more strongly
than strictly required to reach state B. The PMF estimated from
such simulations may overestimate the free energy difference
between states A and B. The position at which the system falls
into state B appears as a kink in the PMF estimate (Figure 1B,
blue solid curve). In turn, upon pulling the system back to state
A along the poor RC, the system may take a different pathway,
i.e., hysteresis may appear (Figure 1A, blue broken arrow). The
system may be pulled up the valley of state B to large free
energies, until the system eventually falls into state A. The
PMFs estimated from the forward and backward pulling
simulations would strongly differ (Figure 1B, blue solid and
broken lines). Critically, the true free energy difference between
states A and B may take any value between the estimates from
the forward and backward nonequilibrium pulling simulations.
Although, here we argued in the light of nonequilibrium
pulling, hysteresis may persist in umbrella sampling or
constrained simulations along such poor RCs, since the initial
coordinates for umbrella and constrained windows are typically
taken from a nonequilibrium pulling simulation conducted
either in forward or backward direction. How severe the
problems with hidden barriers and hysteresis are in practice
depends on the free energy landscape, the barriers involved, the
chosen RC, and the degree of sampling (or simulation time).
Since methods for computing the MFEP, such as the string

method,33 are computationally expensive for biomolecular
systems, there are no simple solutions for circumventing the
problems described above, yet some methods for detecting
hidden barriers have been discussed.32 As a simple measure to
test for hidden barriers, free simulations can be started in the
state of higher free energy, corresponding to state B in Figure 1.
Rapid transitions down to state A or metastability of state B
may give indications on a free energy barrier. To test for
hysteresis, the PMF can be computed from simulation frames
taken from nonequilibrium pulling simulations conducted in
forward and backward direction. If the PMFs from forward and
backward pulling do not agree, indicative of hysteresis, caution
in the interpretation of the PMFs is advised.
In a recent study,26 we systematically compared three

different reaction coordinates that have been used for PMF
calculations of transmembrane pore formation. (a) The

Figure 1. (A) Hypothetical two-valley energy landscape, illustrating
two possible problems with poor reaction coordinates (RCs). The
minimum free energy path (MFEP, red arrow), passing over the
transition state (TS), would reveal a free energy barrier separating
states A and B (red line in panel B, bottom). In contrast, the PMF
along a poor reaction coordinate (A, horizontal black arrow) would
not reveal the barrier, since the barrier would be integrated out along
the orthogonal degree of freedom (DOF), leading to a “hidden
barrier” (black line in panel B). In addition, upon pulling the system
along the poor RC within finite simulation time, sampling problems
may lead to hysteresis (blue arrows in panel A) and incorrect estimates
for the free energy difference between states A and B (blue lines in
panel B). For a more detailed explanation, see text.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00106
J. Chem. Theory Comput. 2017, 13, 2352−2366

2353

http://dx.doi.org/10.1021/acs.jctc.7b00106


distance dph of a single lipid phosphorus atom from the
membrane center, corresponding to a lipid flip-flop proc-
ess.11−14 This RC is similar to the coordinate used for pulling
ions or small peptides into a membrane.19,34−36 (b) The
collective RC by Tolpekina et al.,15−17 that guides the lipids
laterally from the defect axis. (c) The RC by Mirjalili and Feig18

given by the average water density inside a membrane-spanning
cylinder. Pulling systems along these three RCs efficiently
introduced pores into the membranes. However, PMF
calculations revealed problems that may be rationalized by
the energy landscape in Figure 1. First, PMFs along none of the
RCs revealed a nucleation barrier in a membrane of 128 DMPC
lipids modeled with the Berger force field,37 despite the fact
that the open pore was stable for 10 μs of simulation,
suggesting that a barrier was integrated out.26 In addition, we
observed pronounced hysteresis between pore-opening and
pore-closing pathways. For instance, during umbrella sampling
simulations along the water density coordinate,18 500 ns of
sampling per umbrella window was required to remove
hysteresis. With the lipid flip-flop coordinate,11 even 1 μs per
umbrella window did not remove hysteresis. Moreover, the free
energy of pore formation computed with the RC by Tolpekina
et al.15 was larger as compared to results using the other RCs,
suggesting that the membrane was more strongly perturbed
than strictly required for pore formation. These problems
prompted us to develop an alternative RC, which is introduced
in the present article.
This Article is organized as follows. First, a new RC is

introduced, designed to probe the presence or absence of a
continuous polar defect over the membrane. We show that
PMF calculations using umbrella sampling along the new RC
rapidly converge and are not affected by hysteresis. We
explicitly demonstrate that restraints applied along the new RC
restrain the system close to the transition state of pore
formation. The influence of free parameters required to define
the RC is carefully analyzed, leading to reasonable default
settings of such free parameters. Finally, we investigate the role
of lipid force fields, membrane system size, and cutoff settings
for Lennard-Jones interactions on the PMFs of pore formation.

■ THEORY

Reaction Coordinate for Probing a Continuous Polar
Defect. The RC is designed to differentiate between (i) polar
defects partly penetrating the membrane (Figure 2A/B) and
(ii) a continuous defect spanning the entire membrane (Figure
2C). To this end, we defined the RC using a membrane-

spanning cylinder that is decomposed into Ns slices along the
membrane normal (Figure 2D). The thickness ds of the slices is
chosen such that pairs of polar atoms in neighboring slices are
capable of forming stable hydrogen bonds, even in the presence
of some disorder and fluctuations. A reasonable value of the
parameter ds is 1 Å. The slices are taken symmetrically around
the center of mass Zmem of the hydrophobic membrane atoms
along the membrane normal. Hence, the center of slice s is

given by = + + −( )z Z s N d/2s s smem
1
2

, where s = 0, ..., Ns −
1.
The RC is defined as the fraction of slices that are occupied

by polar heavy atoms:

∑ξ δ= −

=

−

N N( )s
s

N

s s
p1

0

1
( )

s

(1)

Here, Ns
(p) denotes the number of polar heavy atoms within

slice s of the membrane-spanning cylinder. As polar atoms
contributing to Ns

(p), we used water oxygen atoms as well as the
four oxygen atoms of the lipid phosphate groups. The symbol
δs is a continuous indicator function (0 ≤ δs < 1), which equals
zero if no polar atom is located in slice s (Ns

(p) = 0) and takes a
value close to unity if one or multiple polar atoms are located in
the slice (Ns

(p) ≥ 1). Importantly, δs remains smaller than unity,
irrespective of how many polar atoms are located in slice s. This
property is crucial in order to distinguish between the cases of
(i) few slices occupied by many polar atoms, as present in a
geometry of a hanging droplet (Figure 2A), and (ii) every slice
occupied by at least one polar atom, as present in a continuous
polar defect (Figure 2C).
To carry out umbrella sampling in an MD simulation along

the RC, ξ must be differentiable with respect to the coordinates
of the atoms. Hence, we formulate δs and Ns

(p) as differentiable
switch functions as follows:

δ ψ ζ=N N( ) ( ; )s s
p

s
p( ) ( )

(2)

where ψ denotes the switch function

ψ ζ
ζ

=
≤

− >−⎪

⎪⎧⎨
⎩x

x x

c x
( ; )

if 1

1 e if 1bx (3)

The parameter ζ indicates the fraction to which a slice is filled
upon the addition of the first polar atom into the slice. A typical
value for ζ would be 0.75. The parameters b and c are taken as b
= ζ/(1 − ζ) and c = (1 − ζ)eb, leading to the continuous and
differentiable switch function shown in Figure 3A. Importantly,

Figure 2. (A−C) Illustration of common aqueous defects in a lipid membrane: (A) asymmetric “hanging droplet” structure, (B) two laterally
displaced partial water defects, and (C) continuous defects spanning the complete membrane. The reaction coordinate (RC) proposed here is
capable of differentiating between these three common structures. (D) Illustration of the proposed reaction RC, defined via a membrane-spanning
cylinder that is decomposed into “slices” along the membrane normal (illustration, 7 slices). The RC ξ is given by the fraction of slices that are
occupied by polar atoms, as indicated by blue shaded surfaces (illustration, ξ ≈ 5/7).
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since ψ(Ns
(p), ζ) rapidly saturates at Ns

(p) > 1, the RC ξ is
strongly increased by the addition of the first polar atom to any
slice, and ξ is only marginally increased by the addition of a
second or third polar atom to the same slice. Hence, the
function ψ indeed approximates an indicator function for
“occupied” slices. Likewise, the number of polar atoms Ns

(p)

located in slice s is formulated in terms of switch functions as
follows:

∑=
=

N f z d X Y Rr( , , , , , )s
p

i

N

i s s
( )

1
cyl cyl cyl

p( )

(4)

Here, ri = (xi, yi, zi) are the Cartesian coordinates of atom i, and
N(p) is the number of polar heavy atoms in the entire system,
here taken as the oxygen atoms of water and lipid phosphate
groups. The indicator function f takes unity if atom i is located
within slice s and within a cylinder of radius Rcyl around the
polar defect, and it takes zero otherwise. The coordinates (Xcyl,
Ycyl) denote the lateral position of the cylinder axis, located
approximately at the polar defect (see below). A typical value
for the cylinder radius Rcyl is 1.2 nm. Defining the RC with such
a cylinder-shaped indicator functions is required to distinguish
between (i) two laterally displaced partial defects in each
membrane leaflet (Figure 2B), which may be stabilized by
membrane undulations, and (ii) a single continuous defect over
the entire membrane (Figure 2C).
Similar to Mirjalili and Feig,18 we decompose the indicator

function f into a radial and an axial contribution

=f f z z d f x y X Y R( , , ) ( , , , , )i s s i iaxial radial cyl cyl cyl (5)

The radial and axial indicator functions are formulated as
differentiable functions using the following step function θ(x;h)
based on third-order polynomials, where 2h is the width of the
switch region (Figure 3B):18
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In this work, we used h = 1/4. The axial and the radial indicator
functions were defined as

θ=
−⎛

⎝⎜
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s
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θ=
⎛
⎝
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R
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i

radial cyl cyl cyl
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where ri = [(xi − Xcyl)
2 + (yi − Ycyl)

2]1/2 denotes the lateral
distance of atom i from the cylinder axis. Notably, upon moving
an atom from a singly occupied slice into a neighboring empty
slice, the RC remains constant. This useful property holds
because (a) θ(x; h) is symmetric around the inflection points at
±1 and (b) ψ(x; ζ) is linear up to x = 1 (Figure 3A and B).

Lateral and Normal Center of the Defect. The RC
outlined in the previous paragraph requires (a) the definition
for the lateral center of the defect (Xcyl, Ycyl), around which the
cylinder is aligned, as well as, (b) the center of the membrane
along the membrane normal Zmem, used to define the position
of the slices. The latter was simply taken as the center of mass
of the heavy lipid-tail atoms,

∑= −

=

Z N z
j

N

jmem a
1

1

a

(9)

where Na denotes the number of lipid tail atoms. Defining the
slice positions relative to the Zmem ensures that the RC does
change if the membrane drifts in z direction during the
simulation.
Defining the lateral center of mass is more involved because

we simulate with periodic boundary conditions. In a longer
simulation, the defect may drift laterally over the periodic
boundaries, which cannot be prevented by simple measures
such as a common center of mass motion removal of a group of
atoms. Consequently, the defect may become broken over the
periodic boundaries, leading to problems when using standard
center of mass calculations. Therefore, we used a center of mass
definition that remains valid in systems with periodic boundary
condition.38,39 This can be achieved by mapping the x and y
coordinates of the atoms onto the unit circle and, subsequently,
averaging the sine and cosine of the angle.
In the following, we describe the definition of the x

coordinate of the cylinder center Xcyl. The y coordinate Ycyl is
defined analogously. For a careful introduction into the center
of mass definition used here we refer to the appendix of ref 39.
The Cartesian coordinate xi of atom i is mapped onto the unit
circle using θi

x = 2πxi/Lx, where Lx is the box dimension in x
direction. Subsequently, the sine and the cosine of θi

x are
averaged over the atoms with appropriately chosen weights as
follows:

Figure 3. Switch functions used to define a reaction coordinate that is
differentiable with respect to the positions of the atoms. (A) Switch
function ψ(Ns

(p); ζ), indicating whether a slice is occupied or not. The
parameter ζ determines the fraction to which the slice is filled upon
the addition of the first atom. A reasonable value is ζ = 0.75. (B)
Continuous step function θ(x,h) used to define if an atom is located
within a slice or not. 2h is the width of the switch region. We used h =
1/4.
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where we introduced the normalization constants W ≔ ∑s=0
Ns−1

ws
(cyl) and Fs ≔ ∑i = 1

N(p)

faxial(zi, zs, ds). Accordingly to eq 10, the
sin(θi

x) and cos(θi
x) are first averaged over the atoms in each

slice s, as given by the sum over N(p) atoms weighted by the
indicator function faxial(zi, zs, ds). Subsequently, a weighted sum
over all slices is conducted, as given by the sum over s. The
weight ws

(cyl) for slice s was taken as

=w Ftanhs s
(cyl)

(11)

Hence, the weights ws
(cyl) are close to unity if the slice is

occupied by an atom, irrespective of whether the atom is within
the cylinder or not. In addition, the weights ws

(cyl) never exceed
one, even if the slice is occupied by many atoms. This definition
ensures that the cylinder center (Xcyl, Ycyl) is dominated by the
atoms in the thin polar defect, but not by the large number of
polar atoms in the headgroup or bulk water region. Finally, the
center of mass of the cylinder is defined by mapping back the
averages in eq 10 into the interval [0, Lx] of the Cartesian
coordinate

π
π

= − +X X X
L

[atan 2( , ) ]
2

x
cyl cyl

sin
cyl
cos

(12)

where the function atan2(y,x) denotes the two-parameter
inverse tangent function implemented in many computer
programming languages.
The derivatives of the RC with respect to the atomic

positions, as required to compute the atomic forces, are
evaluated in the Appendix. The RC was implemented into an
in-house version of Gromacs 4.6,40 that is available from the
authors upon request.

■ METHODS

Simulation Setup and Parameters. Membrane systems
of 64, 96, 128, or 162 DMPC lipids and 40 water molecules per
lipid were build with the MemGen web server.41 If not stated
otherwise, results for the 128-lipid system are reported below.
The simulation setup and parameters were identical to our
previous study.26 Accordingly, the system was equilibrated until
the box dimensions and the potential energy were fully
converged. If not stated otherwise, parameters from Berger et
al.37 were used for DMPC and water was modeled with the
SPC model.42 The simulations were performed with the
GROMACS 4.6 software.40 Bonds and angles of water were
constrained with the SETTLE algorithm,43 and all other bonds
were constrained with LINCS.44 The temperature of the
simulations was controlled at 323 K, if not stated otherwise,
using a stochastic dynamics integrator.45 The pressure was
controlled at 1 bar using a semi-isotropic weak coupling scheme
(τ = 1 ps).46 Electrostatic interactions were calculated using the
particle-mesh Ewald method.47,48 Dispersion interactions and
short-range repulsion were described by a Lennard-Jones (LJ)
potential, which was cut off at 1 nm, if not stated otherwise.
The direct-space Coulomb cutoff was set to the same value as
the LJ cutoff distance. Since the DMPC model does not contain
any explicit hydrogen atoms, a time step of 4 fs was applied.
To test the influence of the force field, additional simulations

were conducted using the Slipids force field with with TIP3P
water model,49,50 as well as using the CHARMM36 force field
with the CHARMM-modified TIP3P model (with LJ
interactions on hydrogen atoms).51 During CHARMM36
simulations, only the chemical bonds involving hydrogen
atoms were constrained. A switched LJ potential was used
with cutoff at 1.0 and 1.2 nm, and the direct-space Coulomb
interactions were truncated at at 1.2 nm. During Slipid
simulations, LJ as well as direct-space Coulomb interactions

Table 1. Summary of Umbrella Sampling PMF Calculations Conducted for This Studya

lipid/water force field Nlip
b t (ns)c ζ Rcyl (nm) ds (nm) rLJ (nm)d Figurea

Berger/SPC 128 140 0.75 0.8 0.1 1.0 4B; 6A, B; 8A, B, C; 11A
Berger/SPC 128 50 0.65 0.8 0.1 1.0 8A, B, C
Berger/SPC 128 50 0.85 0.8 0.1 1.0 8A
Berger/SPC 128 50 0.75 0.6 0.1 1.0 8B
Berger/SPC 128 50 0.75 1.2 0.1 1.0 8B
Berger/SPC 128 50 0.75 1.6 0.1 1.0 8B
Berger/SPC 128 50 0.75 ∞ 0.1 1.0 8B
Berger/SPC 128 50 0.75 0.8 0.07 1.0 8C
Berger/SPC 128 50 0.75 0.8 0.15 1.0 8C
Berger/SPC 128 50 0.75 0.8 0.2 1.0 8C
Slipids/TIP3P 128 50 0.75 0.8 0.1 1.2 11A
CHARMM36/TIPS3Pe 128 50 0.75 0.8 0.1 1.2f 11A
Berger/SPC 64 100 0.75 0.8 0.1 1.0 12
Berger/SPC 96 60 0.75 0.8 0.1 1.0 12
Berger/SPC 162 60 0.75 0.8 0.1 1.0 12
Berger/SPC 128 100 0.75 0.8 0.1 0.9 13A
Berger/SPC 128 100 0.75 0.8 0.1 1.2 13A
Berger/SPC 128 50 0.75 0.8 0.1 1.4 13A
Berger DPPC/SPC 128 100 0.75 0.8 0.1 0.9 13B
Berger DPPC/SPC 128 100 0.75 0.8 0.1 1.0 13B
Berger DPPC/SPC 128 100 0.75 0.8 0.1 1.2 13B
Berger DPPC/SPC 128 60 0.75 0.8 0.1 1.4 13B

aThe lipids were DMPC if not stated otherwise. bNumber of lipids. cSimulation time per umbrella window. dcutoff for Lennard-Jones potentials.
eCHARMM-modified TIP3P. fSwitched potential, see Methods.
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were truncated at 1.2 nm. A time step of 2 fs was applied. All
other parameters were identical to the Berger simulations.
Umbrella Sampling and PMF Calculation. PMFs were

computed along the reaction coordinate ξ (eq 1) using the
technique of umbrella sampling.52 Starting frames for umbrella
sampling were either taken from a “slow-growth” pore-opening
or, to exclude that the PMFs are affected by hysteresis, from a
pore-closing simulation. Accordingly, starting in the equilibrium
state, the pore was opened by pulling the system along ξ with a
harmonic potential (force constant 3000 kJ mol−1). The
minimum of the harmonic potential was moved with constant
velocity from ξ = 0 at time 0 to ξ = 1 at 50 ns. Subsequently,
the system was restrained at ξ = 1 for 100 ns to equilibrate the
fully open pore. Eventually, the system was pulled back to ξ = 0
within another 50 ns. PMFs in Figure 6B were computed from
initial frames taken from the pore-closing simulation, all other
PMFs were computed from the initial frames taken from the
pore-opening simulation.
Umbrella sampling was performed using 24 umbrella

windows. To ensure that the transition state of pore formation
is well sampled, we used tighter spacing of umbrella windows
and larger force constants at at ξ ≥ 0.7 as compared to ξ < 0.7.
Accordingly, 11 windows were distributed between ξ = 0 and ξ
= 0.65 in steps of 0.065, using a force constant of 5000 kJ
mol−1. Additional 13 windows were distributed between ξ = 0.7
and ξ = 1 in steps of 0.025, using a force constant of 10 000 kJ
mol−1. Each umbrella window was simulated between 50 and
140 ns (Table 1). The first 10 ns were omitted for equilibration,
if not stated otherwise. The PMFs were constructed from the
umbrella histograms with the weighted histogram analysis
method (WHAM), as implemented in the g_wham soft-
ware.53,54

Parameters for the New Reaction Coordinate. If not
stated otherwise, the following parameters were used during
PMF calculations: Ns= 26, ds = 0.1 nm, Rcyl = 0.8 nm, and ζ =
0.75. To test the influence of ds, additional simulations using
the following sets of Ns/ds were used: 13/0.2, 17/0.15, and 37/
0.07 nm. To test the influence of Rcyl, additional simulations
were conducted using values of Rcyl of 0.6, 1.2, 1.6, and infinite.
To test the influence of ζ, additional simulations were
conducted using ζ = 0.65 and ζ = 0.85. The parameters used
for all PMFs computed for this study are summarized in Table
1.
Maximum-Likelihood Estimates for the Lifetime of

the Open Pore. As shown in the Results section, we used free
simulations starting from the open pore to test the metastability
of the open pore. The lifetime τ of the open pore was estimated
from M free simulations of simulation time Ts. Let m denote
the number of simulations in which the pore closed within
simulation time Ts, such that the pore was still open at time Ts
in (M − m) simulations. Let ti (i = 1, ..., m) denote the
simulation times of the closing transitions, where 0 ≤ ti ≤ Ts.
Assuming a simple monoexponential decay to the closed state,
the probability that the pore is still open at time t is given by
exp(−t/τ), where t is the simulation time. Hence, the
probability for observing a closing event at ti is proportional
to exp(−ti/τ)/τ, and the probability that a pore closes at any
time after Ts is given by exp(−Ts/τ). Hence, a likelihood L for
observing m pore closure events at times ti, while observing (M
− m) open pores at time Ts can be formulated, as L ∝
[∏i=1

m exp(−ti/τ)/τ] × [exp(−Ts/τ)]
(M−m). Maximizing log(L)

yields the maximum-likelihood estimate for the pore lifetime τml
= m−1[(M − m) Ts + ∑i = 1

m ti]. As expected, if the pore closed

in all M simulations (m = M), then τml reduces to the common
mean lifetime following τml (m = M) = M−1 ∑i = 1

M ti.

■ RESULTS AND DISCUSSION
PMF of Pore Formation in DMPC Exhibits a

Nucleation Barrier. We used umbrella sampling to compute
the PMF for pore formation in a membrane of 128 DMPC
lipids (see Methods), using 140 ns of simulation time per
umbrella window. All PMFs were computed in the NPT
ensemble at a constant pressure of 1 bar and in absence of any
applied surface tension. The umbrella histograms in Figure 4A

exhibit sufficient overlap along the reaction coordinate (RC).
Notably, the histograms are not Gaussian but instead exhibit
some equidistant spikes. These spikes may be rationalized by
the fact that integer occupancies of the slices (Ns

(p) = 1, 2, ...)
are more likely than fractional occupancies. Consequently,
positions along ξ that are realized purely by integer occupancies
have slightly increased free energy or, equivalently, exhibit
spikes in the umbrella histograms. Hence, the spikes do not
imply poor convergence but merely reflect variations of entropy
as a consequence of the coarseness of the RC.
Figure 4B presents the PMF for pore formation, where ξ ≈

0.2 corresponds to the flat intact membrane, ξ ≈ 1 to the fully
formed open pore, and ξ ≈ 0.8 to the transition state of pore
formation. The free energy of the open pore of ∼50 kJ mol−1 is
in reasonable agreement with previous PMF calculations of a
similar simulation system but using different RCs. Indeed, PMF
calculations using the position of a single phosphorus atom
with respect to the membrane center dph as RC suggested free
energies of pore formation between 45 and 55 kJ mol−1 (refs 13

Figure 4. (A) Umbrella histograms and (B) PMF for pore formation
in a DMPC membrane on the basis of 140 ns simulation time per
umbrella window. The PMF exhibits a clear nucleation barrier at ξ =
0.8, implying metastability of the open pore (ξ ≈ 1). The spikes in the
umbrella histograms reflect the coarseness of the reaction coordinate,
that is, integer occupancies of slices are more likely than fractional
occupancies.
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and 26). PMF calculations based on the water density
coordinate by Mirjalili and Feig18 suggested 55 kJ mol−1 (ref
26).
Remarkably, the PMF along the new RC exhibits a

nucleation barrier at ξ ≈ 0.8 (Figure 4B). The barrier
rationalizes why, in previous work,26 pores in free simulations
of the same system did not spontaneously close, even within a
total of 10 μs of free simulation. The appearance of the
nucleation barrier is in contrast to results obtained with
previous RCs, which did not reveal a nucleation barrier for pore
formation in membranes of DMPC12,26,55 or of other lipids
such as DLPC, DPPC, or DOPG.12,13,16,18,26,55 Hence, the
absence of the nucleation barrier in previously computed PMFs
for DMPC suggests that the barrier was integrated out,26 or in
other words, the nucleation barrier was previously a “hidden
barrier”.31,32

Figure 5A presents typical simulation frames along the RC,
including the flat membrane, a partial defect, and the fully

formed continuous pore. Figure 5B presents three typical
frames at the transition state around ξ ≈ 0.8. In line with
previous propositions,13,26 these frames reveal that the
transition state may be characterized by structures that are
about to form a continuous hydrogen bond network over the
membrane.
Convergence and Absence of Hysteresis. Since PMFs

are by definition ensemble properties, the computed PMF
should obviously not depend on the direction of the reaction.
In practice, however, PMFs computed from MD simulations
may be strongly affected by hysteresis26 (see Introduction and
Figure 1). To exclude similar hysteresis effects with the new
RC, we computed PMFs along pore-opening and pore-closing

pathways, similar to our previous work.26 Accordingly, initial
coordinates for umbrella sampling were either taken from a 50-
ns slow-growth pore-opening simulation or from a slow-growth
pore-closing simulation (see Methods). Subsequently, the
PMFs were computed from different time intervals of the
umbrella sampling simulations to obtain the equilibration time
required to remove any influence from the pathway (opening
or closing). Figure 6 demonstrates that the PMFs computed

with our new RC exhibit virtually no hysteresis. Only 5 ns of
equilibration were sufficient for obtaining similar PMF for pore-
opening (Figure 6A) and pore-closing pathways (Figure 6B).
The absence of hysteresis suggests that the new RC was

capable of restraining the system close to the transition state of
pore formation. To show this more explicitly, we picked 74
simulation frames from a 140 ns umbrella window near the
transition state, we triggered free simulations from these frames,
and we observed whether the systems fell into the open or into
the closed state during the free simulations. More specifically,
frames were taken from the umbrella window restrained at ξ =
0.85, picking frames that fulfilled 0.854 < ξ < 0.856. The 74
trajectories of those free simulations are shown in Figure 7A.Figure 5. Typical simulation snapshots taken from the umbrella

sampling simulations. Lipids are visualized as sticks, water oxygen as
red spheres, and lipid phosphorus atoms as orange spheres. (A) Flat
membrane (ξ = 0.2), partial defect (ξ = 0.6), and the fully formed
aqueous pore (ξ = 1). (B) Typical snapshots near the transition state
of pore formation (ξ ≈ 0.8). For clarity, the atoms in all snapshots
were shifted laterally such that the center of the cylinder (Xcyl, Ycyl) is
at the box center.

Figure 6. PMFs computed along (A) the pore-opening pathway and
(B) the pore-closing pathway, using different time intervals of umbrella
sampling simulations (see legend). Pore-opening and pore-closing
PMFs are nearly identical, demonstrating that the calculations do not
suffer from hysteresis. The PMFs were computed using the parameters
ζ = 0.75, Rcyl = 0.8 nm, and ds = 0.1 nm.

Figure 7. (A) Seventy-four trajectories of free simulations starting near
the transition state. Initial frames were picked from a 140 ns umbrella
window restrained at ξ = 0.85. Approximately half of the 74
simulations fell into the open state, the other half into the closed
state. (B) Final state of the 74 free simulations in (A) versus the
simulation time at which the initial frames was picked from the 140 ns
umbrella simulation, exhibiting a short autocorrelation time. This
analysis suggests that the system was restrained tightly to the transition
state of pore formation. The PMFs were computed using the
parameters ζ = 0.75, Rcyl = 0.8 nm, and ds= 0.1 nm.
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Within 10 ns, approximately half of the simulations reached the
state of the open pore (Figure 7A, ξ ≈ 1), whereas the other
half of the simulations fell into the state of the flat membrane
(Figure 7A, ξ ≈ 0.2). Very few simulations remained near the
transitions state after 10 ns. In addition, Figure 7B summarizes
the final state of these 74 free simulations versus the simulation
time at which the initial frame was picked from the umbrella
sampling window. The key finding is that the final state reached
by the free simulations (open or closed) is hardly correlated
over the simulation time at which the initial frames were picked
from the umbrella window. This findings demonstrates that the
umbrella simulations indeed restrain the system tightly to the
transition state, rationalizing the absence of hysteresis between
pore-opening and pore-closing simulations.
To assess the convergence of the PMFs with simulation time,

we computed all PMFs in this study from various time intervals
of the umbrella sampling simulations. We typically observed
that the shape of the PMFs near the transition state (0.7 < ξ <
1) converged more slowly as compared to the other regions of
the PMF. As an example, PMFs in Figure 6A and B were
computed from 20 ns intervals, revealing some variance of the
position of the main barrier. For obtaining fully converged
PMFs at 323 K, we suggest to carry out umbrella sampling for
50 or 100 ns per umbrella window for such one-component
lipid membranes as considered here. At 300 K, we suggest
simulations of 100−150 ns per umbrella window.
Influence of the Parameters ζ, Rcyl, and ds. The RC

suggested here requires the definition of three parameters: ζ,
Rcyl, and ds (see Theory). Strictly speaking, using a different set
of these parameters leads to a different RC and to a different
numerical prediction for the free energy of pore formation.
Using unsuitable parameters could potentially yield a poor RC
with problems as described in the Introduction: (i) they could
lead to an overestimate of the pore formation free energy (PMF
at ξ ≈ 1) since they would perturb the membrane more
strongly that strictly required for pore formation and (ii) they
could lead to a PMF that misses the barrier. In turn, PMFs
computed with a good set of such parameters would yield a
relatively low estimate for the free energy of the open pore, and
it would reveal the pore nucleation barrier.
To identify a suitable set of parameters, we carefully tested

the influence of ζ, Rcyl, and ds on the PMFs (Figure 8). Here,
PMFs were computed using 50 ns of simulation per umbrella

window, while omitting the first 10 ns for equilibration. We
found that changing ζ has a relatively small effect on the overall
shape of the PMF or on the free energy of pore formation, but
ζ has some effect on the PMF near the transition state (Figure
8A). On the basis of these PMFs, we used ζ = 0.75.
Changing the radius of the cylinder Rcyl, in contrast, may

strongly influence the PMFs (Figure 8B). First, the position of
the equilibrium state (PMF minimum) is shifted to larger ξ
with increasing Rcyl (Figure 8B, ξ ≈ 0.1 to 0.3). This finding
merely reflects that, given larger Rcyl, equilibrium fluctuations of
polar atoms near the head groups of the intact membrane have
a higher chance to occupy additional slices. More critically,
choosing a small Rcyl leads to an increased free energy of pore
formation (Figure 8B, black and red curves). This finding is
rationalized by the fact that a narrow cylinder confines the polar
defect more strongly than required for pore formation. In turn,
a very large Rcyl may not differentiate between (i) two laterally
displaced hanging droplet structures (Figure 2B) and (ii) an
continuous polar defect (Figure 2C). Consequently, the
nucleation barrier is integrated out (Figure 8B, brown curve).
Since the PMF computed with Rcyl = 1.2 nm yield a relatively
small free energy of the open pore, while clearly exhibiting the
nucleation barrier (Figure 8B, green curve), we suggest Rcyl =
1.2 nm as a reasonable value for future studies.
Figure 8C presents PMFs computed with different values for

the slice thickness ds. Using ds ≥ 0.15, the PMFs are still
increasing near ξ ≈ 1, suggesting that the number of polar
atoms inside the defects is insufficient to form a stable
hydrogen bond network over the membrane (Figure 8C, green
and blue curves). In contrast, using ds = 0.1 or 0.07 nm, the
PMFs clearly resolve the nucleation barrier (Figure 8C, black
and red curves). On the basis of these PMFs, we consider
values ds in the range of 0.07 to 0.1 nm as reasonable.

Comparison with Previous Reaction Coordinates. As
pointed out above, PMF calculations using previously
established RCs did not resolve the nucleation barrier for
pore formation over a DMPC membrane,12,55 and the
calculations suffered from hysteresis between pore-opening
and pore-closing simulations.14,26,31 We proposed that the lack
of a nucleation barrier indicates that restraining the system
along those RCs did not restrain the systems close to the
transition state of pore formation. Here, by reanalysing

Figure 8. Influence of the parameters ζ, Rcyl, and ds on the PMF of pore formation. (A) Effect of ζ (using Rcyl = 0.8 nm, ds = 0.1 nm), (B) effect of
Rcyl (using ζ = 0.75, ds = 0.1 nm), and (C) effect of ds (using ζ = 0.75, Rcyl = 0.8 nm).
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umbrella sampling simulations conducted for our previous
work,26 we show explicitly that this proposition indeed holds.
Figure 9A−C presents results from umbrella sampling

simulations restrained along the following three RCs: (A) the
collective radial RC ξR suggested by Tolpekina et al.,15 (B) the
distance dph of a lipid phosphorus atom from the membrane
center,11 and (C) the average density of water ρcyl (or the
number of water molecules) within a fixed membrane-spanning
cylinder.18 The symbols in Figure 9A−C show the average and
standard deviation of the position along the new RC ξ
computed from the umbrella sampling simulation restrained
along the previous RCs ξR, dph, or ρcyl, respectively, where ρcyl
was plotted relative to the bulk water density ρbulk. Evidently,
restraining the system along the previous RCs did not lead to a
complete sampling of the new RC. Instead, the systems
sampled either states with a partial defect (ξ ≲ 0.6) or states
with a continuous transmembrane pore (ξ ≳ 0.9), but the
systems did not properly sample the transition state near ξ ≈
0.83. Further, nearly no transitions between the partial and
continuous defects were sampled.
A notable exception is the umbrella window restrained at

ρcyl/ρbulk = 0.66, indicated by the arrow in Figure 9C, which
deserves additional explanation. The mean position and
standard deviation along ξ suggest that this window sampled
the transition state. Indeed, as shown in Figure 10A, this
umbrella simulation crossed the transition state twice within
500 ns, once toward the continuous defect (Figure 10A, 115
ns), and back to the partial defect (Figure 10A, 430 ns).
However, all the intermediate positions close to the transition
state were hardly sampled. Hence, restraining the system at
ρcyl/ρbulk = 0.66 leads to a simulation that sampled two highly
distinct states, namely (i) a partial defect (ξ ≈ 0.55, Figure
10B) and (ii) a continuous polar defect (ξ ≈ 0.9, Figure 10C),
but the simulation visited the transition state only twice per 500
ns. Notably, the time scale of the transition in this window
coincides with the time scale of a few hundred nanoseconds
required to remove hysteresis between pore-opening and pore-
closing simulations conduced with the ρcyl coordinate.

26 This
finding suggests that slow transitions over the transition state
are related to slow recovery from hysteresis. In turn, restraining
the system close to the transition state, as possible with the new
RC, enables rapid sampling of the transition state and avoids
hysteresis.

Lipid Force Field: Influence on Metastability but
Hardly on Pore Formation Free Energy. So far, we
presented PMFs of pore formation purely based on the Berger
lipid force field.37 However, the metastability of the open pore
as well as the free energy for pore formation may in principle
depend on the force field. Previous simulations using the lipid
flip-flop RC in membranes of DMPC, DPPC, and POPC
observed large differences between PMFs computed with
different force fields.14,56 However, the authors attributed the
differences to hysteresis, suggesting that sampling problems
were partly hiding the actual force field differences.14

Here, we computed the PMF for pore formation over a
DMPC membrane using three popular lipid force fields,
namely, using the Berger force field,37 Slipids,49 and

Figure 9. Comparison with umbrella sampling simulations restrained along three other reaction coordinates: (A) the collective radial coordinate ξR
suggested by Tolpekina et al.,15,16 (B) the distance of a single phosphate dph from the membrane center, corresponding to a lipid flip-flop,11−13,55 and
(C) the water density within a fixed membrane-spanning cylinder ρcyl relative to bulk water density, ρbulk, suggested by Mirjalili and Feig.18 The
coordinate ξ was computed using the parameters ζ = 0.75, Rcyl = 0.8 nm, and ds= 0.1 nm.

Figure 10. Analysis of a single umbrella simulation window restrained
along the coordinate ρwater/ρbulk = 0.66, suggested by Mirjalili and
Feig.18 (A) time trace of the umbrella simulation projected onto the
new reaction coordinate. This umbrella window visited the state of a
partial defect (ξ ≈ 0.55) and of a continuous defect (ξ ≈ 0.9), but
visited the transition state only twice per 500 ns. (B) Typical snapshot
of a partial defect and (C) of a continuous defect, taken from the time
points highlighted by red circles in panel A.
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CHARMM36,51 at temperatures of 323 K (Figure 11A) and
300 K (Figure 11B). As shown in Figure 11A and B, the PMF

maximum is nearly invariant with respect to the applied force
field. This finding is in contrast to PMFs computed with the
lipid flip-flop coordinate, which implied strongly increased free
energies with the Slipids and CHARMM36 force fields for
moving a headgroup to the membrane center.56 Hence, as
suggested previously,14 the force field may influence the rate of
the formation of continuous defect in simulations with a
headgroup restrained close to the membrane center, leading to
different PMF estimates as computed from limited simulation
times. In other words, in simulations using the lipid flip-flop
coordinate, the magnitude of hysteresis depends on the force
field. However, as shown here, in the absence of hysteresis,
PMFs are much less dependent on the force field than
previously anticipated.
The presence and magnitude of the nucleation barrier

depends both on the force field and the temperature (Figure
11A and B). Simulations with the Berger force field suggest
metastability of the open pore both at 323 and 300 K, as

indicated by the pore nucleation barrier at ξ ≈ 0.8 and the free-
energy minimum at ξ ≈ 1 (Figure 11A and B, black). The
barrier is more pronounced at 300 K as compared to 323 K. In
contrast, simulations with the Slipids or CHARMM36 force
fields suggest metastability at 300 K but not at 323 K (Figure
11A and B, red and blue). Taken together, the PMFs suggest
that metastability but not the free energy of pore formation is
force field-dependent for DMPC lipids. In addition, for all force
fields, we find that lower temperatures favor metastability of the
open pore, that is, lower temperatures lead to slower rates of
pore closure.
To further confirm the nucleation barriers in Figure 11A and

B, we carried out free simulations starting from various time
frames of umbrella windows of the open pore. Ten free
simulations each were conducted using either the Berger lipids
(Figure 11C and D) or the Slipids (Figure 11E and F) and
simulating either at a temperature of 323 K (Figure 11C and E)
or at 300 K (Figure 11D and F). The trajectories of pore
closure are visulalized in Figure 11D−F, and the maximum-
likelihood estimates for the pore lifetime τml, as computed from
these trajectories, are summarized in Table 2. Overall, we find

that the pore lifetimes τml are qualitatively in line with the
nucleation barrier height (as measured from the state of the
open pore). At 300 K, pores in Slipid simulations close with a
relatively long lifetime of 280 ns and pores in Berger
simulations do not close even within a total simulation time
of 5000 ns, in line with the more pronounced barriers in the
PMF at 300 K (Figure 11B, black and red). At 323 K, pores in
Slipids simulations close rapidly with a lifetime of only 22 ns, in
line with the absence of a pore nucleation barrier (Figure 11B,
red), and the pores in Berger simulations close within 53 ns, in
line with the reduced barrier as compared to the 300 K
simulations. However, we also note that the closure rates do
not quantitatively agree with the rates suggested by the barrier
height using a simple transition state ansatz. This may indicate
that the PMFs in Figure 11A and B are not yet fully converged,
or that the barrier is still partly integrated out, even with the
new reaction coordinate. Nevertheless, the qualitative corre-
spondence between barrier weighs and closure rates provide
additional evidence that the PMFs in Figure 11A indeed reflect
the free energy landscape of pore formation.

Membrane Size: Influence on Metastability, but
Hardly on Pore Formation Free Energy. When simulating
a very small membrane, the entire membrane between a pore
and its periodic image may be highly bent, which influences the
free energy landscape of pore formation. Indeed, in previous
simulations with the Berger force field, we found that the pore
in a membrane of 64 DMPC lipids spontaneously closed,
whereas the pore in a membrane of 128 lipids remained open
for at least 10 μs.26 To rationalize these previous findings in
energetic terms, we computed the PMFs with the new RC
using membranes of 64, 96, 128, and 162 lipids (Figure 12)
modeled with the Berger force field. Evidently, the membrane

Figure 11. (A, B) PMFs of pore formation over DMPC membranes
using three different lipid force fields: Berger force field37 (black),
Slipids49 (red), and CHARMM3651 (blue), at temperatures of (A) 323
or (B) 300 K. The Berger force fields suggests a metastable prepore
state at 323 and at 300 K, whereas Slipids and CHARMM36 force
fields suggest a metastable prepore state purely at 300 K. (C−F) Free
simulations starting from the open pore (ξ ≈ 1) using the Berger force
field (C, D) or using Slipids (E, F), at temperatures of 323 (C, E) and
300 K (D, F). Different rates of pore closure are observed, in line with
different pore nucleation barriers in the PMFs in (A, B). Note the
different scaling on the time axes in (C−F). The trajectories presented
in (D) were taken from previous work.26 The coordinate ξ was
computed using the parameters ζ = 0.75, Rcyl = 1.2 nm, and ds= 0.1
nm.

Table 2. Maximum-Likelihood Estimate of Pore Lifetimes
τml from Free Simulations

lipid force field T (K) τml (ns)

Berger et al. 323 53
Berger et al. 300 ≳5000
Slipids 323 22
Slipids 300 280
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size has a relatively small influence on the free energies of pore
formation in DMPC. However, using small systems of 64 or 96
lipids, the open pore is not metastable, as indicated by the
absence of a PMF minimum at ξ = 1 (Figure 12, black and red),
and in contrast to membranes of 128 or 162 lipids (Figure 12,
brown and blue). These PMFs provide the energetic rationale
for the spontaneous pore closure in simulations of 64 DMPC
lipids in previous work.26 On the basis of these PMFs, we
suggest to use membrane systems of at least 128 lipids for
simulations of narrow pores over DMPC membranes
considered here. However, for lipids with longer tails as
compared to DMPC membranes or for membranes containing
cholesterol, we cannot exclude that larger membrane systems
are required to avoid finite-size artifacts.
Small Effects from Truncation of Van-der-Waals

Interactions. It is well established that the cutoff distance
used for truncating Lennard-Jones (LJ) interactions may
influence various membrane properties, such as the area per
lipid, surface tension, or order parameters.14,57 Huang and
Garcia reported large influence of the LJ cutoff on PMFs along
the lipid flip-flop coordinate dph in a DPPC membrane modeled
with the Berger force field.14 The LJ cutoffs influenced the PMF
mainly because a shorter cutoff facilitated the formation of a
continuous water defect over the membrane, leading to a flat
PMF if the phosphorus atom was near the membrane center
(dph ≈ 0). In contrast, no such continuous water defect formed
within simulation time when using longer cutoffs, leading to an
ever increasing PMF as the phosphorus atom was pulled to the
membrane center and even into the opposite leaflet. Hence, as
discussed by the authors,14 hysteresis (i.e., sampling problems)
are more dominant with longer cutoffs when using the dph RC.
However, it remained unclear to which extent the true
underlying PMF (assuming no sampling problems) is
influenced by the LJ cutoffs.
Therefore, using the new RC, we revisited the influence of

the LJ cutoff on the PMF of pore formation. Figures 13A and
13B present PMFs for pore formation over membranes of 128
DMPC lipids or 128 DPPC lipids, respectively, respectively,
each modeled with the Berger force field and using LJ cutoffs of
0.9, 1.0, 1.2, or 1.4 nm. The DPPC system was set up as
described for DMPC systems in the Methods. We found that

the free energy of pore formation depends more strongly on
the cutoff in DPPC as compared to DMPC. For DMPC, we
found that using longer LJ cutoffs of 1.2 or 1.4 nm, the free
energy of pore formation is increased by only ∼4 kJ mol−1, as
compared to simulations with a 0.9 or 1.0 nm cutoff. For
DPPC, in contrast, the free energy of pore formation may vary
by up to 14 kJ mol−1 upon varying the cutoff between 0.9 and
1.4 nm. However, these cutoff effects in DPPC are smaller as
compared to the effects based on the flip-flop coordinate,14

suggesting that cutoff effect on previous PMFs for DPPC were
partly a consequence of hysteresis, in line with the
interpretation by Huang and Garcia.14 Since the PMF for
DPPC with the 0.9 nm cutoff appears to represent an outlier,
we do not recommend the short 0.9 nm cutoff for future
studies. In contrast, the differences between the PMFs with a
cutoff ≥1.0 nm are probably within the accuracy of the force
field, suggesting that a cutoff of 1.0 nm provides a reasonable
balance between accuracy and simulation speed for the
simulations with the Berger force field considered here. Overall,
if we avoid the shortest 0.9 nm cutoff, the LJ cutoff seems to
have a relatively small effect on the PMF of pore formation.

■ CONCLUSIONS
We have developed and implemented a new reaction
coordinate (RC) that is capable of probing the formation or
rupture of a continuous polar defect over a lipid membrane. We
showed that the new RC may be used for PMF calculations of
pore formation using the technique of umbrella sampling. The
PMFs converged rapidly and exhibited virtually no hysteresis
between pore-opening and pore-closing simulations, in contrast
to PMF calculations with previously established RCs. The
absence of hysteresis is a consequence of the key property of
the RC, namely that it is capable of restraining the system close
to the transition state of pore formation.
The favorable properties of the RC are, we believe, a

consequence of three design elements: (a) The RC does not
probe the total number of polar atoms inside the membrane or
inside a membrane-spanning cylinder,18 but instead the number
of slices along the membrane normal that are occupied by at
least one polar atom. Consequently, the RC may differentiate
between structures of (i) a large asymmetric defect spanning
only one leaflet (the “hanging droplet” structure, Figure 2A)
and (ii) a thin continuous aqueous pore spanning the complete

Figure 12. PMFs for pore formation in DMPC using the Berger force
field and using systems of 64, 96, 128, or 162 lipids (see legend). In
small systems, the open pore is not metastable, probably because of a
highly bent membrane between the pore and its periodic image, and
the pore formation free energy is slightly increased. The coordinate ξ
was computed using the parameters ζ = 0.75, Rcyl = 0.8 nm, and ds=
0.1 nm.

Figure 13. PMFs for pore formation in (A) DMPC and (B) DPPC
using the Berger force field and using Lennard-Jones cutoff distances
between 0.9 and 1.4 nm (see legend). In DMPC, the cutoff has only a
small influence on the PMFs in the absence of hysteresis. In DPPC,
however, the cutoff has a larger effect on the PMFs. The coordinate ξ
was computed using the parameters ζ = 0.75, Rcyl = 0.8 nm, and ds=
0.1 nm. Ns = 26 slices were used for DMPC, and Ns = 30 for DPPC.
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bilayer (Figure 2C). Such asymmetric hanging droplet
structures may be stabilized by membrane undulation and,
hence, are a major source of hysteresis in simulations of pore
formation.14,31 (b) Only the atoms within a membrane-
spanning cylinder contribute to the RC proposed here, a
feature already suggested by Mirjalili and Feig.18 This property
is crucial to avoid the formation of two laterally displaced
partial defects in opposite leaflets (Figure 2B). Such laterally
displaced defects are likewise stabilized by membrane
undulation, and they are another source of hysteresis. (c)
The position of the membrane-spanning cylinder in the
membrane plane is not fixed at an arbitrary position. Instead,
the center of the cylinder (Xcyl/Ycyl) is dynamically defined,
thereby allowing the cylinder to move as the defect drifts in the
membrane plane. Consequently, the system cannot move along
the RC by shifting the defect laterally out of the cylinder, which
we identified as a source for hysteresis when using the RC by
Mirjalili and Feig (see Figure 10).18,26 Notably, we defined
(Xcyl/Ycyl) using a center of mass definition that remains well-
defined in systems of periodic boundary conditions (eqs
10−12). This definition avoids an ill-defined center of mass if
the defect travels over the periodic boundary. Taken together,
the RC proposed here avoids by design several common
sources of undesired hysteresis in simulations of pore
formation.
Decades ago, Abidor et al. hypothesized that the nucleation

of a transmembrane pore involves a free energy barrier.20

Accordingly, the open pore would form a metastable prepore
state. The existence of such prepore states in tension-free
membranes has remained controversial because PMF calcu-
lations using previous RCs did not resolve any free energy
barrier between the states of the intact membrane and the open
pore.12,15,16,26,55 Here, using the new RC, we showed that such
prepore states over a DMPC membrane may indeed be
metastable, and we determined the barrier height to a few
kilojoule per mole when using the Berger force field. We noted
that the magnitude of the nucleation barrier depends not only
on temperature, but also on the applied lipid force field,
suggesting that the magnitude of the barrier under experimental
conditions remains to be clarified. However, PMF calculations
with the new RC provide a route for a systematic analysis of the
physicochemical determinants of the long-discussed prepore
state.
Using the new RC, we have systematically analyzed the

influence of (i) the lipid force field, (ii) the cutoff distance used
for Lennard-Jones (LJ) interactions, and (iii) system size on the
PMF of pore formation over a DMPC membrane. Previous
work suggested a large influence from such parameters.14,34,56

With the new RC, in contrast, we found that the force field, LJ
cutoff distance, and membrane size have a relatively small effect
on the free energies of pore nucleation. Hence, it is reasonable
to believe that larger effects reported previously14,34,56 were a
consequence of using other RCs, possibly leading to different
degrees of hysteresis with different choices for such parameters.
However, we found that the metastability of the open pore in
DMPC may depend on such parameters. Specifically, the pore
was metastable when simulating a larger membrane with the
Berger lipids, but the pore was unstable with the Slipids or
CHARMM36 force fields at 323 K, or when simulating a small
membrane.
This Article focused on establishing and testing the new RC.

Yet the RC is well suitable to probe the impact of various
external factors, with impact on a range of biophysical

questions. For instance, it will be highly interesting to test
the influence of lipid composition, membrane-active peptides,
or peptide fragments, membrane hydration, tension, or electric
fields on pore formation. The RC may be used for studying
pore formation during membrane fusion. In addition,
membrane permeation of highly polar solutes, in particular of
ions, typically involve the formation of aqueous defects. We
therefore believe that simulations of solute permeation will
benefit from the RC presented here. Such future efforts may
provide a route for a quantitative understanding of the role of
pore formation in membrane biophysics.

■ APPENDIX

Atomic Forces Derived from Pulling along the Reaction
Coordinate

Derivatives of the Reaction Coordinate (RC). The
simulation system can be pulled or restrained along the RC ξ
by applying the harmonic biasing potential V = k(ξ − ξ0)

2/2,
leading to a force along ξ of Fξ = −∂V/∂ξ = −k(ξ−ξ0), where
ξ0 is the reference position along ξ. The force Fξ translates to
forces acting on the atoms via the chain rule, Fj = Fξ·∂ ξ/∂ rj,
where j is the atomic index. Using eqs 1−4, we have

∑ ∑ξ ψ ζ∂
∂

= ′

∂
∂

−

=

−

=
N N

f
z d X Y R

r

r
r

( ; )

( , , , , , )

j
s

s

N

s
p

i

N

j
i s s

1

0

1
( )

1

cyl cyl cyl

s
p( )

(13)

where ψ′ denotes the derivative of the switch function ψ (eq 3).
Evaluating the derivatives requires some care since the center of
the cylinder (Xcyl, Ycyl) depends on the atomic coordinates.
Using eq 5, we get
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To evaluate the gradients in eq 14, note that faxial depends on zj
but not on xj or yj, whereas f radial depends on xj, yj and zj, since
the (Xcyl, Ycyl) depend on zj. We obtain
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where we used for eq 15 that ∂Xcyl/∂yj = ∂Ycyl/∂xj = 0. The
symbol δij denotes the Kronecker delta. The symbol θ′ denotes
the derivative of the continuous switch function θ (eq 6), given
by
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Taking the sum over i in eq 13 and using eq 14, we obtain
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where we introduced the abbreviation
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Derivatives of the Cylinder Center. Evaluating eq 18
requires the derivatives of the lateral position of the cylinder
axis Xcyl and Ycyl with respect to the atomic coordinates. Let us
first define the average over the sine and cosine functions for
each slice s, weighted by the indicator function faxial
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With these abbreviations, eq 10 takes the form
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Likewise, to compute Ycyl, we define
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The derivates of sx̅
(s) and cx̅

(s) with respect to the Cartesian
coordinates of atom j are
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The derivatives of sy
(s) and cy

(s) are computed analogous to eqs 25
to 27 by replacing xj and Lx with yj and Ly, respectively. For eqs
27, we used that the derivative of a weighted average, ⟨A⟩=
(∑i vi)

−1(∑i vi Ai), with respect to one of the weights vj is given
by
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For the derivatives of the weights ws
(cyl), as defined in eq 11, and

of the normalization constant W ≔ ∑s ws
(cyl) we have
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and ∂ws
(cyl)/∂xj = ∂ws

(cyl)/∂yj = 0. The derivaties of Xcyl
sin and Xcyl

cos,
as defined in eq 23, are
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The derivatives of Ycyl
sin and Ycyl

cos are analogous to eqs 31−33. Eqs
31−33 are evaluated using eqs 21−27 and 29. To obtain the
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derivatives of the Xcyl and Ycyl, we use the derivative of the atan2
function given by
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Using eq 34, we finally obtain
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as well as ∂Xcyl/∂yj = ∂Ycyl/∂xj = 0. These derivatives are used in
eq 18 for obtaining the derivatives of the radial indicator
function f radial(ri). The terms [(Xcyl

sin)2 + (Xcyl
cos)2]−1 and [(Ycyl

sin)2 +
(Ycyl

cos)2]−1 in eqs 35−38 may lead to very rare numerical
instabilities. These terms typically fluctuate around values of 10
or 1 for systems of a flat membrane or of a fully formed defect,
respectively. Hence, to avoid such rare instabilities, we
truncated these terms at a value of 500, thus yielding
numerically stable simulations.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: jhub@gwdg.de.
ORCID
Jochen S. Hub: 0000-0001-7716-1767
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Kalina Atkovska for critically reading the manuscript.
Financial support by the Deutsche Forschungsgemeinschaft is
gratefully acknowledged (SFB 803/A12 and HU 1971-1/1).
N.A. was also supported by a Dorothea Schloezer fellowship.

■ REFERENCES
(1) Brogden, K. A. Antimicrobial peptides: pore formers or metabolic
inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238−250.
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