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ABSTRACT Aquaporins facilitate water permeation across biological membranes. Additionally, glycerol and other small
neutral solutes are permeated by related aquaglyceroporins. The role of aquaporins in gas permeation has been a long-
standing and controversially discussed issue. We present an extensive set of atomistic molecular dynamics simulations that
address the question of CO2 permeation through human aquaporin-1. Free energy profiles derived from the simulations display
a barrier of ;23 kJ/mol in the aromatic/arginine constriction region of the water pore, whereas a barrier of ;4 kJ/mol was
observed for a palmitoyloleoylphosphatidylethanolamine lipid bilayer membrane. The results indicate that significant aquaporin-
1-mediated CO2 permeation is to be expected only in membranes with a low intrinsic CO2 permeability.

INTRODUCTION

Aquaporins are passive integral membrane channels facili-

tating efficient, yet selective permeation of water across bio-

logical membranes (1,2). Also, glycerol and other small linear

alcohols are known to permeate via related aquaglyceropo-

rins like GlpF from Escherichia Coli (3). So far, thirteen

different aquaporins and aquaglyceroporins with different

specificities have been identified in humans. They are ex-

pressed in tissues as diverse as the kidney, lung, red blood

cells, brain, and the eye lens. Malfunction of aquaporins has

been shown to be associated with a number of pathological

conditions (4–8). The elucidation of the structure of different

aquaporins (9–13) and aquaglyceroporins (14,15) formed the

basis for the determination of the molecular mechanism of

water permeation and proton exclusion by molecular dy-

namics simulations (16–21).

It has been a long-standing and controversially discussed

question whether also gas transport across biological mem-

branes is facilitated by aquaporins, or whether gases like

carbon dioxide can freely permeate lipid bilayer membranes.

The role of aquaporin-1 (AQP1) for CO2 permeation in mam-

malian lungs and red blood cells, for example, remains un-

clear (22–29). Part of the controversy is apparently due to the

fact that i), CO2 permeation is usually measured indirectly,

via acidification through the action of carbonic anhydrase

(CA); ii), that, depending on the pH and on the concentration

of CA, the CO2 permeation is limited by unstirred water

layers on both sides of the membrane (30); iii), that in eryth-

rocytes this acidification is additionally influenced by the

action of the HCO�
3 -Cl

� transporter; and that iv), inhibitors

like 4,49-diisothiocyanato-stilbene-2,29-disulfonic acid (DIDS)
and mercurial compounds may not be specific for the

HCO�
3 -Cl

� transporter and AQP1, respectively (26–29).

Moreover, there is a large variability in the CO2 permeability

of different membranes (26,29–31).

Another process for which aquaporin-mediated CO2 per-

meation has been suggested to play a physiological role is

photosynthesis. In a recent study it was shown that the

leaf growth of tobacco plants was dependent on the level of

NtAQP1 expression, an aquaporin homologous to human

AQP1 (32).

Here, we study the barrier for CO2 permeation through

AQP1 as well as through a pure palmitoyloleoylphosphatidy-

lethanolamine (POPE) bilayer, using extensive atomistic mo-

lecular dynamics simulations.Weaddress the questionwhether

CO2 is likely to permeate through AQP1 and close homologs

like the plant aquaporin NtAQP1 by comparing the free energy

for CO2 permeation through AQP1 to the corresponding

profiles for a model lipid bilayer membrane. Moreover, we

present profiles for CO2 interactions along possible perme-

ation pathways and estimate permeation coefficients.

METHODS

An equilibrated simulation box of a tetramer of human AQP1 embedded in a

solvated lipid bilayer was chosen as starting configuration of the simulations.

The starting structure of human AQP1 was modeled based on the x-ray

structure of bovine AQP1 (PDB code 1J4N (10)) by mutating differing

residues using the WHAT IF modeling software (33). The two sequences are

91% sequence identical, making a structural overlay straightforward. The

periodic simulation box contained the AQP1 tetramer, 271 POPE lipids and

19769 TIP4P (34) water molecules. The OPLS all-atom force field (35,36)

was employed for the protein, lipid parameters were taken from Berger et al.

(37). Four chloride ions were added to neutralize the simulation cell. The

system was equilibrated for 2 ns before the production simulations. A typical

simulation box is shown in Fig. 1 a.

All simulations were carried out using the GROMACS simulation

software (38,39). Electrostatic interactions were calculated with the particle-

mesh Ewald method (40,41). Short-range repulsive and attractive dispersion

interactions were described together by a Lennard-Jones potential, which

was cut off at 1.0 nm. The Settle (42) algorithm was used to constrain bond

lengths and angles of water molecules, and LINCS (43) was used to con-

strain all other bond lengths, allowing a time step of 2 fs. The simulation

temperature was kept constant by weakly (t ¼ 0.1 ps) coupling the protein,

lipids, and solvent separately to a temperature bath (44) of 300 K. Likewise,

the pressure was kept constant by weakly coupling the system to a pressure

bath of 1 bar. The xy (membrane plane) direction was pressure coupled with

Submitted January 16, 2006, and accepted for publication April 27, 2006.

Address reprint requests to Bert L. de Groot, Tel.: 49-551-201-2308; Fax:

49-551-201-2302; E-mail: bgroot@gwdg.de.

� 2006 by the Biophysical Society

0006-3495/06/08/842/07 $2.00 doi: 10.1529/biophysj.106.081406

842 Biophysical Journal Volume 91 August 2006 842–848



a coupling constant t of 1 ps, whereas the box length in z-direction was kept
fixed to avoid artifacts in the umbrella sampling simulations (see below).

The CO2 simulations were set up as follows: the AQP1 channel was

divided into 0.5-Å wide equidistant sections with the center of each section

representing an umbrella center. For each section the equilibrated trajectory

was searched for snapshots with water molecules as close as possible to the

chosen position of the umbrella potential. This water molecule was subse-

quently replaced by CO2. Umbrella sampling calculations were carried out

by applying a harmonic restraint force along the pore coordinate with force

constants between 100 and 6400 kJ/mol/nm2. The umbrella sampling simu-

lations were performedwith CO2 with the restraint acting on the carbon atom,

and—for comparison and to validate the procedure—with water by restrain-

ing the oxygen atom. No restraint along the lateral directions was applied.

We observed that a possible flexibility of Arg-195 has strong impact on

the barrier in the aromatic/arginine (ar/R) constriction region (see Results).

Since these flexibilities are sampled slowly in the simulations we performed

additional umbrella samplings in the ar/R region with starting positions

taken from an independent equilibrium run. This way, eight independent

channels contributed to our profile. Additionally, the protonation state of

His-180 opposing the Arg-195 might influence the barrier height. In six out

of eight channels simulated the d-nitrogen was protonated, in two channels

the e2-nitrogen. In accordance with a recent finding for water permeation,

no significant influence of the protonation state of His-180 on the CO2 barrier

was found (45).

To reduce CPU time, and hence improve sampling, CO2 molecules were

placed in each pore and, to further improve statistics, at three or four

positions along the channel coordinate within one simulation run. A minimal

distance of 25 Å between CO2 molecules along the pore was imposed to

ensure that interactions between CO2 molecules (if any) are negligibly small.

The umbrella sampling histograms from all monomeric channels were com-

bined to compute a free energy profile using the weighted histogram analysis

method (WHAM) (46). To account for the periodicity of the system, we

implemented a cyclic version of the WHAM procedure. In total, 3912 his-

tograms from 400 ps simulations were obtained (taking only the last 300 ps

for analysis and using the first 100 ps for equilibration), extracted from a

total of 334 ns of simulation time of the aquaporin system.

Additionally, CO2 molecules were placed along the central channel

surrounding the tetrameric axis. Umbrella positions were chosen as before,

either by replacing a water molecule, or by adding it to the structure in case

of an empty position. For the central pore along the tetrameric axis, 888

histograms were obtained.

Umbrella simulations to obtain a free energy profile for water along the

AQP1 pore were performed the same way, except that water molecules close

to the desired minimum of the artificial potential were not replaced but were

directly restrained. Like for CO2, the individual umbrella simulations were

carried out for 400 ps. In total, 3092 histograms were obtained. Force con-

stants were chosen between 100 and 1600 kJ/mol/nm2.

Umbrella simulations for the lipid bilayer were performed by inserting

CO2 molecules at various positions into random snapshots of a 20-ns equil-

ibrium run of a bilayer patch of 128 POPE and 4777 TIP4P water molecules.

Up to 12 CO2 molecules were inserted into one simulation keeping a

minimum distance of 25 Å in the lateral direction and 30 Å perpendicular to

the bilayer. A total of 3200 histograms were extracted from 260 simulations

of 500 ps each, using the last 300 ps for analysis and the first 200 ps for

equilibration. Force constants between 100 and 800 kJ/mol/nm2 were used.

To account for fluctuations of each of the channels within the tetramer,

the umbrella positions were corrected with respect to the center of the

corresponding monomer. As a robust measure for the monomer position

we chose the center of mass of the backbone atoms of the transmembrane

helices.

Partial charges for CO2 were obtained from electrostatic fitting using the

CHELPG procedure to wavefunctions obtained at the RHF/6-31G* level,

resulting in a charge of 0.9378e on the carbon atom and �0.4689e on the

oxygen atoms. The Lennard-Jones parameters s and e for the CO2 carbon

were 0.375 nm and 0.439 kJ/mol, respectively, and for the CO2 oxygen

0.296 nm and 0.877 kJ/mol, respectively. The CO2 parameters were val-

idated by comparison to the oil/water partition coefficient of CO2. The ex-

perimentally determined value of near unity (47) compares favorably to the

small free energy difference for CO2 between the bulk water phase and the

lipid tail region of the bilayer (cf. Fig. 2, shaded curve).

Profiles for enthalpic interactions of CO2 (Fig. 3) were calculated as the

sum of short-range Coulomb interactions (#1 nm) and Lennard-Jones in-

teractions. Note that these do not correspond to the total enthalpy for a given

CO2 position since they only include interactions directly involving CO2.

CO2-induced alterations in the surroundings (like protein-water interactions)

are not included in this component of the enthalpy. The profiles do, however,

give more insight into the origin of the free energy barriers.

Permeability coefficients Pf for the POPE membrane were estimated

by counting barrier crossings in simulations where CO2 molecules were

allowed to diffuse freely through a POPE bilayer (see below). After equil-

ibration, we observed 3.4 barrier crossings per barrier, direction, and nano-

second. The permeability coefficient for one barrier of DGPOPE ¼ 4 kJ/mol

was calculated by P
ð1Þ
f ¼ F=ðScsÞ where F ¼ 3.4/ns denotes the transition

rate, S ¼ 30 nm2 our membrane surface and cs ¼ 0.52 M the CO2 con-

centration, giving P
ð1Þ
f ¼ 23 cm=s. Since half of the CO2 molecules crossing

the first barrier will return and not permeate through the bilayer this refers to

an estimated permeability coefficient for POPE of PPOPE
f ¼ 12 cm=s.

FIGURE 1 (a) Typical simulation setup of an AQP1 tetramer, solvated in a POPE bilayer and water. Five CO2 molecules in bulk water are shown in blue and

red. (b) In the top view, the four monomeric water pores and the central cavity can be identified. (c) A snapshot taken from an equilibrium simulation showing

a water pore (helices and ribbon representation) filled by a single file of water, and the central cavity along the fourfold axis of the tetramer (surface

representation). The surface representation is colored according to residue hydrophobicity: hydrophobic residues in orange, hydrophilic residues in blue. All

figures with molecular representations were made with PyMOL (50).
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Using the permeability coefficient for a single POPE barrier we estimated

the coefficients for the water pore and the central cavity via Pf9 ¼ P
ð1Þ
f

exp(� (DG9� DGPOPE)/kT). Here, DG9 denotes the barrier of the water pore
or the central cavity, T the temperature, and k the Boltzmann constant. In

terms of rate theory, this estimate assumes the same prefactor for CO2

permeation across a single POPE barrier as through a channel. Additionally,

it rests on the assumption that the permeation rate is limited solely by the

main barrier along the reactive coordinate. Along the central cavity two

barriers of the same height are present, giving rise to an additional factor

of 1/2. Unit permeability coefficients were calculated by pf ¼ PfSmono since

the free energy barriers were normalized to an area of one AQP monomer.

We estimated the area of one monomer as Smono ¼ 10.3 nm2. Note that the

area per monomer in vivo can be expected to be lower than the area per

monomer in AQP1 crystals (11.5 nm2) (48).

Statistical errors of the free energy profiles were estimated using

bootstrap analysis. To account properly for limited long-time sampling, we

performed bootstrap analysis by considering complete histograms as inde-

pendent data points: From the N original histograms we randomly selected N

histograms (allowing duplication) whichwere subsequently used forWHAM

analysis. This procedure was performed 50 times for each profile allowing

the calculation of standard deviations. The standard deviations at the main

barriers were 1kJ/mol for the monomeric channel, 2 kJ/mol for the central

cavity, and 1 kJ/mol for the POPE membrane.

The barrier at the ar/R region in the monomeric channel is influenced

strongly by the flexibility of Arg-195, which is sampled slowly (see above).

Therefore, we calculated the barrier for each of the eight simulated channels

separately. Considering these eight barriers as independent data points gave

an additional uncertainty of 3 kJ/mol.

Bulk water correction

Umbrella simulations such as presented here, with a molecule restrained to a

certain z-position, i.e., to an x-y-plane parallel to the bilayer, will not sample

all possible x-y positions in the simulated time window, especially within the

bulk water region. This leads to an overestimation of the free energy level in

the bulk region. The correction for this entropic effect is straightforward, as

the effect is related to the sampled area (and hence, the simulation time). We

therefore took advantage of the fact that in AQP1 the relative free energy for

water can be obtained not only by umbrella simulations but also from the

water number density distribution via G(z) ¼ �kT ln r(z). The bulk free

energy level for water can be easily and accurately determined from such a

profile. A 14-ns equilibrium MD simulation was used for this purpose.

The bulk level was normalized to the area of an AQP1 monomer,

estimated as approximately Amono¼ 10.3 nm2, to allow direct comparison to

the lipid membrane profile, which is independent on the area. The two pro-

files derived from the umbrella sampling simulations and from the water

density distribution were found to be rather similar (Fig. 4), rendering an

overlay of the two profiles straightforward. The resulting bulk level cor-

rection for the umbrella sampling simulations of water of DGbulk
w ¼

3:2 kJ=mol was found to be relatively small. The correction is already

incorporated in Fig. 4 as a linear trapezial correction to the umbrella profile

in the pore entrance and exit region.

The bulk correction depends on the sampled area within the simulation

which is approximately proportional to the diffusion constant of the solute.

From simulations of a box of pure TIP4P water and of 20 CO2 molecules

solvated in 4084 TIP4P water molecules we calculated the diffusion con-

stants of water and CO2 in the simulations to Dw ¼ 3.6 3 10�5 cm2/s and

DCO2
¼ 2:73 10�5 cm2=s, respectively, giving a bulk correction for CO2 of

DGbulk
CO2

¼ DGbulk
w 1 kT lnðDw=DCO2

Þ ¼ 3:9 kJ=mol.

RESULTS AND DISCUSSION

Fig. 2 shows the free energy profile obtained as a potential of

mean force from a set of umbrella sampling simulations for

three potential pathways for CO2 permeation through AQP1

embedded in a lipid bilayer: the pathway through an

aquaporin water pore (black, solid line), the central channel
(black, dashed line), and through the POPE membrane

(shaded line). In the monomeric water channel CO2

molecules encounter a major barrier of ;23 6 4 kJ/mol in

the ar/R constriction region (also termed selectivity filter, see

Fig. 1 c) and a lower one of;96 1 kJ/mol around the region

with the two conserved NPA motifs. The corresponding

enthalpic interactions of CO2 to water and to the protein,

respectively, are shown in Fig. 3 b. As can be seen, there is

no significant loss of interactions involving CO2 in the ar/R

region, rendering the free energy barrier either entropic in

nature, or, more likely, due to indirect enthalpic effects like

an unfavorable configuration of surrounding water mole-

cules. This is illustrated in Fig. 5, which shows a typical

pathway of CO2 through the monomeric AQP1 channel, as

derived from the umbrella sampling simulations. As can be

seen, water molecules form strong hydrogen bonds to Arg-

195 in the ar/R region, which are broken upon CO2 passage.

Fig. 3 a shows 115 pathways for CO2 molecules that were

not restrained by an umbrella potential. The trajectories show

that the CO2 molecules behave as expected from the

potential of mean force, not spontaneously passing the ar/R

constriction region within the simulated time of 500 ps.

The barrier in the ar/R is strongly influenced by the

flexibility of Arg-195. In the crystal structure, its guanidi-

nium group points straight into the pore creating the nar-

rowest part of the channel. Two water molecules forming

H-bonds to the e- and h1-nitrogens are displaced by a per-

meating CO2 molecule (compare Fig. 5, second and third
picture from bottom). In this configuration, the barrier is

likely to be higher than 23 kJ/mol. However, during sim-

ulation we observed some flexibility of Arg-195 probably

caused by flexibility in Loop C. Arg-195 is stabilized

sterically by the neighboring Asn-127 and by a frequent

FIGURE 2 Free energy profile for CO2 permeation through the

aquaporin-1 water pore (black, solid line), the tetrameric central cavity

(black, dashed line), and a POPE bilayer (shaded).
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H-bond to the carbonyl oxygen of Gly-125 (see Fig. 1). In

such cases, no breakage of H-bonds between water and Arg-

195 is necessary lowering the barrier for CO2 passage signif-

icantly. The effect of the flexibility of Arg-195 on the CO2

barrier is reflected by the reported uncertainty of 4 kJ/mol.

As described in the methods section we roughly estimated

the unit permeability coefficient for CO2 permeation through

AQP1 to be pf ¼ 1 3 10�15 cm3/s. The error of 4 kJ/mol in

the main barrier corresponds to factor of 5 in the permea-

bilities, i.e., a range of 2 3 10�16 to 5 3 10�15. The unit

permeability coefficient for water permeation through a two-

dimensional AQP1 crystal is pwaterf ¼ 5:433 10�14 cm3=s
(48), thus, the resistance of AQP1 to CO2 is between one and

two orders of magnitude higher in comparison to water. This

result can also be expected by comparison of the correspond-

ing free energy barriers of 12 and 23 kJ/mol, respectively.

The single channel permeability estimated from our re-

sults can be compared with the results from Nakhoul et al.

(22), Prasad et al. (24), and Yang et al. (25) from experiments

with oocytes, erythrocytes, and proteoliposomes containing

AQP1. As discussed by Yang et al. (25), the results reported

by Nakhoul et al. (22) refer to a single channel CO2 per-

meability of 1–23 10�14 cm3/s, whereas the results reported

by Prasad et al. (24) give;53 10�15 cm3/s. Yang et al. (25)

did not observe AQP1-mediated CO2 permeation and re-

ported an upper limit of 3 3 10�16 cm3/s. Therefore, our

estimate of ;1 3 10�15 cm3/s most closely matches the re-

sult by Prasad et al. and the upper limit by Yang et al.

A second possible pathway through AQP1 would be the

central pore along the fourfold axis of the tetramer. Due to its

hydrophobicity the central pore is neither filled by water nor

does it conducts water (see Fig. 1 c). Two major barriers for

FIGURE 4 Free energy profiles of water through the monomeric AQP1

pore obtained by umbrella simulations (solid) and from evaluation of the

water density distribution (shaded).

FIGURE 3 Trajectories of unrestrained CO2 molecules in the monomeric

AQP1 channel (a), and profiles of enthalpic interactions of CO2 with water

(green), protein or POPE, respectively (blue), and total (red) together with

the free energy profiles of (cf. Fig. 2, black) for the monomeric channel (b),

the central channel around the tetramer axis (c), and through the POPE

bilayer (d). The enthalpic profiles only show interactions involving CO2 and

do not contain interactions within the CO2’s surroundings.
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CO2 permeation can be identified: first, a barrier of ;12 6
2 kJ/mol at z ¼ 7.5 Å is located near the extracellular en-

trance to the central cavity, surrounded by the 4 Val-50 of the

4 monomers. In this region CO2 molecules lose favorable in-

teractions to neighboring water molecules (compare Fig. 3 c,
green and red lines). A second barrier of the same height is

found;7 Å above the first one. Here, the CO2 is surrounded

by the 4 Asp-48, and hence, it is likely that CO2 competes

with water for hydrogen bonds to Asp-48. The barrier trans-

lates into a permeability coefficient of Pf ¼ 0.1 cm/s for the

central cavity, referring to the area of an AQP1 tetramer, or a

unit permeability coefficient of pf ¼ 4 3 10�14 cm3/s.

The free energy barrier for CO2 permeation through the

central cavity is significantly smaller than for the monomeric

channel. When taking into account that each tetramer con-

tributes four monomeric channels and one central pore, these

barriers would imply that ;10% of AQP1-permeated CO2

would be expected to permeate via the monomeric channels.

Note, however, that in these calculations we have assumed

an empty central channel. Should an ion or organic molecule

be bound in the central cavity under physiological conditions

(like in the recently resolved structure of an aquaporin-Z

tetramer (49)), this would be expected to drastically increase

the barrier for CO2 permeation through the central pore.

Experiments with mercurial AQP1 blockers and with the

C189S mutant suggest that AQP1-mediated CO2 permeation

takes place through the monomeric pore (23,24), which

would imply that, indeed, the central channel is blocked under

the experimental conditions.

The tobacco aquaporin NtAQP1 was recently reported to

facilitate physiologically relevant CO2 permeation (32). The

pore region of NtAQP1 is highly similar to human AQP1,

with the residues surrounding the major barriers in the NPA

and ar/R region fully conserved among the two proteins

(32). Our results suggest that—if the central channel is

blocked—aquaporin-mediated CO2 permeation is expected

to play a significant role in photosynthesis only if the plant

cell membranes have a low intrinsic CO2 permeability, with

an activation barrier well above 20 kJ/mol. However, since

the structure of the central pore of NtAQP1 is unknown, we

cannot exclude that permeation via the central pore lowers

the effective barrier.

Membrane permeability

To address the physiological significance of CO2 permeation

through AQP1, we calculated the free energy barrier for CO2

permeation through a lipid bilayer membrane composed

of pure POPE (Fig. 3 d). Two barriers, one per leaflet, of;4

kJ/mol were observed at the intersection between the polar

headgroups and the aliphatic chains of the lipids, indicatingFIGURE 5 A CO2 at various positions along the water channel indicating

a possible pathway for CO2 along the NPA motifs and through the aromatic/

arginine constriction region. The CO2 molecule is colored in red and marine

blue. On top of the sequence, the corresponding free energy is plotted,

indicating the 23 kJ/mol barrier putatively caused by competition for

hydrogen bonds with Arg-195. Note that frequent hydrogen bonds between

water molecules and Arg-195 break upon CO2 passage.
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that the POPE membrane is highly permeable to CO2. As can

be seen from Fig. 3 d, the free energy barrier coincides with

an enthalpy minimum, rendering the free energy barrier

either entropic or due to indirect, water-mediated enthalpic

effects. A set of simulations in which CO2 was allowed to

diffuse freely corroborated the small barrier for CO2 per-

meation across the POPE membrane. In 8 simulations of 11

ns each, 112 barrier crossing were observed in total for the 92

CO2 molecules that were simulated. Inside the membrane,

the CO2 molecules diffused rapidly, i.e., the energetic bar-

riers near the lipid headgroups limit the permeation through

the bilayer. The permeability constant calculated from these

simulations is PPOPE
f ¼ 12 cm=s.

This value is ;8 times higher than the CO2 permeability

for artificial membranes reported by Prasad et al. (24). The

discrepancy could be due to i), limitations of the force field

used in the simulation; ii), the different lipid composition;

and iii), remaining unstirred layer effects in experiments

even at high concentrations of HCO�
3 and carbonic anhy-

drase (CA). Given a membrane with intrinsic permeability

PM
f , surrounded by two unstirred layers of thickness d each,

the total permeability Ptot
f obeys ðPtot

f Þ�1 ¼ ðPM
f Þ�11

ðD=2dÞ�1
. D denotes the diffusion constant of CO2 in water,

D/d can be considered as a permeability of a single unstirred

layer. Outside the unstirred layers the CO2 concentration is

considered constant due to some buffer. Using this relation, a

diffusion constant of 23 10�5 cm2/s, two unstirred layers of

thickness 60 nm each and an intrinsic membrane permea-

bility of 12 cm/s yields a total permeability of ;1.5 cm/s,

i.e., approximately the value reported by Prasad et al. for

artificial membranes. The CA concentration of 0.5 mg/ml

used by Prasad et al. refers to one CA enzyme per (45 nm)3.

Therefore, if CA is not bound to the membrane, the as-

sumption that CO2 needs to diffuse through a water layer of

60 nm before entering the membrane is within a realistic

order of magnitude. This analysis implies that in experi-

ments, CO2 permeation through membranes with high

intrinsic permeability like POPE might be limited by the

diffusion of CO2 from CA to the membrane and from the

membrane to CA inside the liposome, even at high pH (or

high HCO�
3 concentration) and high CA concentration.

Therefore, intrinsic membrane permeabilities might be un-

derestimated by experiments under such conditions.

CONCLUSIONS

Taken together, these results suggest that CO2 permeation

through AQP1 can be expected to play a physiological role

only inmembraneswith a low intrinsic CO2 permeability, such

as membranes of cells exposed to an inhospitable environment

(26,31). Membranes with similar physicochemical character-

istics to POPE are highly permeable to CO2, rendering a

physiological role for AQP1-mediatedCO2 permeation in such

membranes unlikely. The role of AQP1 mediated CO2

permeation in red blood cells, mammalian lungs and other

tissues therefore depends on the intrinsic CO2 permeability

of the surrounding membrane. Only for membranes with an

activation barrier well above 20 kJ/mol or an empty central

channel can AQP1-mediated CO2 permeation be expected

to play a major role, if a high enough expression level is

provided. An interesting test of this hypothesis would be an

evaluation of the CO2 permeability of vesicles with different

lipid composition and different levels of embedded AQP1.
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