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Interpretation of Solution X-Ray Scattering by Explicit-Solvent Molecular
Dynamics
Po-chia Chen1 and Jochen S. Hub1,*
1Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
ABSTRACT Small- and wide-angle x-ray scattering (SWAXS) and molecular dynamics (MD) simulations are complementary
approaches that probe conformational transitions of biomolecules in solution, even in a time-resolved manner. However, the
structural interpretation of the scattering signals is challenging, while MD simulations frequently suffer from incomplete sampling
or from a force-field bias. To combine the advantages of both techniques, we present a method that incorporates solution scat-
tering data as a differentiable energetic restraint into explicit-solvent MD simulations, termed SWAXS-driven MD, with the aim to
direct the simulation into conformations satisfying the experimental data. Because the calculations fully rely on explicit solvent,
no fitting parameters associated with the solvation layer or excluded solvent are required, and the calculations remain valid
at wide angles. The complementarity of SWAXS and MD is illustrated using three biological examples, namely a periplasmic
binding protein, aspartate carbamoyltransferase, and a nuclear exportin. The examples suggest that SWAXS-driven MD is
capable of refining structures against SWAXS data without foreknowledge of possible reaction paths. In turn, the SWAXS
data accelerates conformational transitions in MD simulations and reduces the force-field bias.
INTRODUCTION
Small- and wide-angle x-ray scattering (SWAXS) has been
gaining popularity as a structural probe for biomolecules in
solution (1,2). Whereas classical SAXS experiments detect
the overall shape of the molecules and large-scale confor-
mational transitions at resolutions down to 20 Å, WAXS
is also sensitive to smaller rearrangements in tertiary and
secondary structures (3). Hence, SWAXS is capable of
detecting a wide range of structural transitions, triggered
by processes such as ligand-binding (3–6), photodissocia-
tion (7), or photon absorption (8,9). Improvements in light
sources and detectors have paved the way for further appli-
cation of SWAXS in many applications such as structure
determination (10–12) and molecular docking (13,14).
Recent developments include the probing of transient
structures in time-resolved measurements (7,8,15,16) and
progress toward the characterization of heterogenous en-
sembles (17–19).

While procedures for obtaining experimental (1) and
calculated (20–26) scattering curves have steadily improved
over the years, the structural interpretation of the curves has
remained challenging (27). The number of independent data
points contained in a SAXS curve is typically given by the
number of independent Shannon channels, expressed as
Nindep z qmaxDmax/p, where qmax is the maximum scat-
tering vector, and Dmax the maximum diameter of the solute
(1). These independent data points are insufficient to derive
a molecular interpretation of the data. Instead, prior physical
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knowledge needs to be added to avoid overfitting of the data.
Prior knowledge is also required to interpret structural data
from other techniques such as x-ray crystallography or
NMR. However, because SWAXS curves contain much
less information, more physical knowledge is required or,
equivalently, a tighter prior distribution of possible confor-
mations should be imposed. A possible strategy for the
interpretation of data with limited information content is
to restrain molecular dynamics (MD) simulations to confor-
mations that are compatible with the experimental data,
while the force field adds the required prior knowledge.
This approach is routine for the refinement of structures
against crystallographic or NMR data, or for the fitting of
structures into electron microscopy maps (28–30).

Devising a related methodology for SWAXS, however,
remains a technical challenge. Coupling of MD simulations
to experimental SWAXS curves requires on-the-fly calcula-
tions of SWAXS curves from simulation frames. Scattering
intensities at small angles are typically computed based on
static structures and by using implicit solvent models.
However, their applicability is limited when the internal
structure of water and thermal fluctuations becomes impor-
tant at wide angles (22,26,31). In addition, implicit solvent
models require fitting of free parameters associated with
the solvation layer and the excluded solvent, thereby
reducing the amount of available information. These issues
are being addressed by explicit-solvent approaches that are
capable of accurately describing the solvation shell or
excluded solvent (25,26,32). However, a direct coupling
of explicit-solvent MD to SWAXS data has remained
elusive.
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Here, we close this gap and present a method to refine
atomistic biomolecular structures against experimental
SWAXS data. The calculations are fully based on explicit
solvent models, thereby avoiding fitting of the solvation
shell and excluded solvent, and allowing the interpretation
of wide-angle data. We sample the conformational space
using all-atom MD simulations, thus referring to the method
as SWAXS-driven MD. Below, using three biomolecular
examples, we illustrate how SWAXS-driven MD induces
conformational transitions without previous knowledge of
potential reaction paths. The derivation of conformations
consistent with given experimental and simulated SWAXS
data demonstrates the capabilities of this approach, and en-
ables future extension toward wide-angle and time-resolved
applications. An implementation of the algorithms pre-
sented here is available from the authors upon request.

Theory

Coupling potential

The coupling of theMDsimulation to an (experimental) target
SWAXS curve Ie(q) was implemented by a hybrid energy

Ehybrid ¼ EFF þ ESWAXS; (1)

where EFF denotes the energy from the MD force field,

while ESWAXS adds an energetic penalty if this simulation
structure is incompatible with the target curve. Here, we
applied two different functional forms for ESWAXS to quan-
tify the deviation between the experimental SWAXS curve
and the SWAXS curve calculated from the simulation
frames.

First, a nonweighted set of harmonic potentials on a log-
arithmic scale was applied,

E
ðlogÞ
SWAXSðtÞ ¼ aðtÞkckBT

nq

Xnq
i¼ 1

½log Icðqi; tÞ � log IeðqiÞ�2;

(2)

where Ic is the SWAXS curve calculated on-the-fly from the
simulation frames and nq is the number of intensity points

spread over the scattering vector q. The parameter kc is a con-
stant that determines the weight of the SWAXS data
compared to the force field. The value a(t) is a time-depen-
dent function that allows a gradual introduction of the
SWAXS-derived potential at the beginning of the simulation.
The nonweighted coupling potential (Eq. 2) turned out to be
numerically stable and to require little optimization of kc, but
it does not explicitly account for statistical uncertainties.

Therefore, second, to account for experimental and calcu-
lated uncertainties, we used

E
ðwÞ
SWAXSðtÞ ¼ aðtÞkckBT

nq

Xnq
i¼ 1

½Icðqi; tÞ � IeðqiÞ�2
s2ðqiÞ : (3)

Here, the error s(qi) accounts for 1) experimental errors se,
2) statistical calculated errors sc, and 3) a systematic error
Biophysical Journal 108(10) 2573–2584
sbuf that originates from the uncertainty of the buffer den-
sity. Because those three sources of error are independent,
we have

s2ðqiÞ ¼ s2
eðqiÞ þ s2

cðqiÞ þ s2
bufðqiÞ: (4)

Calculation of SWAXS curves during MD simulations

SWAXS curves are typically reported after subtracting the
intensity curve of the buffer. Accordingly, our algorithm re-
quires on-the-fly calculations of the difference in scattering
intensity between the solute simulation (system A) and a
second simulation containing purely buffer (system B),
that is, Ic(q,t) ¼ IA(q,t) – IB(q). Because we rely on explicit
water models, Ic cannot be computed from an individual
simulation frame. Instead, fluctuations of the solvent
must be temporally averaged to compute a converged
SWAXS curve, approximating a local ensemble of states
in phase space. In addition, the curves represent an orien-
tational average of the scattering intensities because the
solutes are randomly oriented in the experiment. Following
the nomenclature of Chen and Hub (26) and Park et al.
(33), we thus calculated the net intensity at simulation
time t, as

Icðq; tÞ ¼
�D��~AðqÞ��2EðuÞ

t;t
�
D��~BðqÞ��2EðuÞ�

U

: (5)

Here, ~AðqÞ and ~BðqÞ denote the Fourier transforms of the
instantaneous electron densities of the systems A and B,
respectively. The symbol h,iU is the orientational average,
while the superscript h,i(u) indicates a temporal average
at a fixed solute orientation u. The temporal average over
solute and solvent fluctuations was achieved through a
weighted average over frames of previous simulation, using
weights that decay exponentially into the past:

D��~AðqÞ��2EðuÞ

t;t
¼ NðtÞ�1

Z t

0

��~Aðq; t0Þ��2 eðt0�tÞ=tdt0: (6)

Here,

NðtÞ ¼
Z t

0

exp½ðt0 � tÞ=t�dt0

is a normalization constant, and N (t) / t as t >> t.
The average in Eq. 6 is thus dominated by recent confor-

mations, where the memory time t determines the extent of
fluctuations that are represented by Ic. This procedure per-
mits dynamic updating of the calculated SWAXS intensity
in response to structural transitions carried out in the simu-
lation. In addition, the exponential weight allows for a mem-
ory-efficient implementation (see below). We used values of
t between 1 and 2.5 ns to include solvent and protein side-
chain fluctuations. In contrast, for the pure-buffer system
(system B), all averages h,i(u) were equally weighted.
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The evaluation of Eq. 5 based on a spatial envelope
around the solute (Fig. S1 in the Supporting Material), the
approximation of Eq. 6 by a discrete sum, and the calcula-
tion of the uncertainties, is each described below and in
Chen and Hub (26).
MATERIALS AND METHODS

Computational details

On-the-fly calculation of scattering curves

The net scattering intensity Ic(q,t) in Eq. 5 was computed following the

methods described previously (26), which were found to yield excellent

agreement to experimental SWAXS curves. Accordingly, we constructed

a spatial envelope that encloses the protein with sufficient distance, such

that the solvent at the envelope surface is bulklike. Calculating Ic(q,t)

required two averaging steps: 1) orientational averages representing all

solute rotations and (2) weighted averages over simulation frames repre-

senting conformation sampling (26,33),

Icðq; tÞ ¼ hDðq; tÞiU; (7)

��� �ðuÞ � ���2

Dðq; tÞ ¼ � ~AiðqÞ t;t

� ~BiðqÞ �
þ
�D��~AiðqÞ

��2EðuÞ

t;t
�
���D~AiðqÞ

EðuÞ

t;t

���2
�

�
�D��~BiðqÞ

��2EðuÞ
�
���D~BiðqÞ

EðuÞ���2
�
:

(8)

The orientational average

hDðq; tÞiU :¼ ð4pÞ�1

Z
dUqDðq; tÞ

was evaluated numerically, using J ¼ 1500 q-vectors per absolute value of

q, which were chosen by the spiral method. The conformational averages

are denoted with h,iðuÞt;t , indicating averages at time t with the memory

time constant t, at fixed reference orientation u of the solute. The values
~AiðqÞ and ~BiðqÞ denote the scattering amplitudes from electron densities in-

side the envelope for the solute simulation system-A and the buffer simula-

tion system-B, respectively. The pure buffer simulations were conducted

before running SWAXS-driven MD. Envelopes for the three proteins stud-

ied are shown in Fig. S1.

The scattering amplitude of a single frame was given by

~AiðqÞ ¼
XNA

j¼ 1

fjðqÞeiq , rj ; (9)

where NA is the number of atoms within the envelope, fj(q) is the atomic

form factor, and rj is the position of atom j. The value ~BiðqÞ was calcu-
lated analogously, but over atoms of the buffer system enclosed by the

same envelope. The atomic form factors were approximated by

f ðqÞ ¼ cþP4
k¼1akexp½�bkðq=4pÞ2�; where the values ak, bk, and c are

the Cromer-Mann parameters (34). Atomic form factors for water

were corrected to account for electron-withdrawing effects (35). The

density of the solvent was corrected to match the experimental value

of 334 e nm�3 using the density correction scheme described in previous

work (26).
Exponential averaging

The exponentially weighted averages at time t in Eq. 6 were approximated

by a discrete sum over previous simulation frames,

hXit;t ¼ N�1

n

Xn

k¼ 0

e�kdt=t Xðt � k dtÞ: (10)

Here, t¼ ndt is this time and dt is an update interval, set at>0.5 ps, in order

to average over frames with statistically independent solvent configura-

tions, where N n ¼
Pn

k¼0exp½�kdt=t� is the normalization constant.

The weighted average is thus dominated by contributions within

the previous ~2t, whereas older frames hardly contribute. Equation 10

was further rearranged into a cumulative formulation hXit;t ¼
N�1

n ½XðtÞ þ ðN n � 1ÞhXit�dt;t �; with N n ¼ 1 þ exp(�dt/t)N n�1. This

drastically reduces memory footprint of the algorithm, but also requires

double precision to avoid accumulation of numerical errors. We note

that the unweighted average adopted for the buffer system is recovered

as t / N.

SWAXS-derived forces

MD simulations require forces and, hence, they require analytic derivates of

ESWAXS with respect to atomic coordinates. In this work, we applied

SWAXS-derived forces only to solute atoms. According to the potential

form in Eq. 2, the force on atom k is

FkðtÞ ¼ �Vk E
ðlogÞ
SWAXSðtÞ

¼ �2
aðtÞkckBT

nq

Xnq
i¼ 1

log Icðq; tÞ � log IeðqÞ
IcðqÞ Vk Icðq; tÞ;

(11)

where Vk denotes the gradient with respect to the position of atom k. A

similar expression for the forces can be obtained if the uncertainty-

weighted E(w)
SWAXS is applied instead. Using Eqs. 7 and 8, as well as the

fact that the derivatives of ~BðqÞ vanish, the gradients of the intensity are

given by

VkIcðqÞ ¼ 1

4p

Z
dUqVkDðqÞ; (12)

hD � EðuÞ

VkDðqÞ ¼ 2 Re ~AiðqÞVk

~Ai ðqÞ
t;t

�
D
Vk

~A
�
i ðqÞ

EðuÞ

t;t

�
~BiðqÞ

�ðuÞi
: (13)

Here, Re[,] denotes the real part. As with the intensity calculations (Eqs. 7

and 8), the forces were computed in the reference orientation u after super-

imposing the solute onto a reference structure. Subsequently, the Fk were

rotated into this orientation of the solute. The new averages in Eq. 13

impose significant memory requirements in the order of Nsolute � nq � J,

where Nsolute is the number of solute atoms. In practice, a reasonable choice

for nq is limited by the information content of the SWAXS curve, while J

should be chosen according to 1) the maximum diameter of the envelope,

and 2) the maximum scattering angle q (26,36). Depending on the size of

the solute and the maximum q, several gigabytes of memory may be

required.

We note that the SWAXS-derived forces are not energy-conservative

because they depend not only on present but also on previous coordinates,

which would lead to an energy drift in an NVE ensemble simulation. How-

ever, using a tight stochastic-dynamics temperature coupling scheme, we

did not observe significant drifts in the temperature. In addition, the Fk
Biophysical Journal 108(10) 2573–2584
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may impose a small net force or net torque on the entire solute. Because, in

this article, we are only interested in internal motions of the solute, such net

forces and torques were removed.

To make sure that Ic(q,t) is sufficiently converged before applying

SWAXS-derived forces, the switch function a(t) was set to zero at t < t,

then switched on gradually following [1 – cos(p(t – t)/t)]/2, and set to unity

at t > 2t.

Calculation of uncertainties

The statistical uncertainty sc(q) of the calculated intensities Ic(q) was

computed from the SD of the set D(qi) (jqij ¼ q, i ¼ 1,.,J), then divided

by the square-root of the number Nindep(q) of independent D(qi) at a given

q value. Note that, for small q, D(q) is a smooth function of the direction of

q (at fixed q), whereas D(q) becomes increasingly rough at increasing q.

Hence, Nindep(q) increases with q. Here, we estimated Nindep(q) from the

autocorrelation function of D(qi) on the solid angle in q space. As expected

(36), Nindep(q) was found to increase quadratically with q.

A small uncertainty of the buffer density drbuf translates into a systematic

error sbuf(q) of the calculated intensities, which is dominant at small q. The

error sbuf(q) was computed as follows: The uncertainty drbuf leads to errors

in the scattering amplitudes of dAi(q) ¼ drbufF s(q)/rbuf, where F s(q) de-

notes the Fourier transform of the solvent density within the envelope of

the solute simulation, and dBi(q) ¼ drbufF e(q), where F e(q) is the Fourier

transform of a unit density within the envelope. Inserting these relations

into Eq. 8, we get

dDbufðqÞ ¼ 2drbuf Re

�	D
~A
�
i ðqÞ

EðuÞ

t;t
�
D
~B
�
i ðqÞ

E


�
	
r�1
bufF sðqÞ � F eðqÞ


�
: (14)
Then, sbuf(q) is given by the spherical average of dDbuf(q). In this study, we

used drbuf ¼ 0.01rbuf.

Choice of target SWAXS data and restrained scattering
angles

For leucine-binding protein (LBP), target data was generated from unbiased

simulations. ATCase (Aspartate carbamoyltransferase) experimental data

was transcribed from Fetler et al. (37) as a buffer-subtracted curve without

errors, and Chromosomal Maintenance 1, i.e., exporting 1 (CRM1) exper-

imental data was made available by the group of R. Ficner (see Acknowl-
FIGURE 1 (A) Snapshot of LBP in open state and (B) near-closed state durin

time from Ca-atoms (green arrows). (C) Computed SWAXS-curves for open (l

rium MD trajectories; these SWAXS curves were used as target curves for SWA

ESWAXS over time for five closing (D and E) and five opening trajectories (F and

online.
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edgments) as raw sample and buffer curves. For SWAXS-driven MD, the

experimental intensities were smoothed by a 20-point running average

(see Supporting Details in the Supporting Material). Shannon information

theory implies that the intensity of nearby scattering angles q is largely

redundant (12,38). Thus, there is no need to compute and restrain the entire

SWAXS curve during SWAXS-driven MD. Instead, the number of

restrained q points nq was approximately chosen according to the number

of Shannon channels (see Table S2).

Simulation details

Details on initial coordinates, simulation parameters, analysis, and rigid-

body modeling are provided in the Supporting Material. The algorithms

were implemented into an in-house version of GROMACS 4.6 (39), avail-

able from the authors upon request.
RESULTS AND DISCUSSION

Applications of SWAXS-driven MD to three different pro-
teins are presented below. As a test case, conformational
transitions of LBP are presented using different functional
forms of ESWAXS (Eqs. 2 and 3), and the refined structures
are compared to models derived by rigid-body modeling.
For the LBP case only, MD simulations were coupled
to theoretically computed SWAXS curves. In addition,
using experimental SAXS data, solution states of ATCase
and of the nuclear exportin CRM1 were derived. For those
three proteins, we found that conformational transitions
significantly affect the scattering intensities mainly in the
SAXS but not in the far WAXS regime (Fig. S2). Hence,
structures were here refined only using SAXS or near-
WAXS data up to 8 nm�1. However, because the explicit-
solvent methods employed to compute intensities are
accurate up to wide angles (26), we believe that SWAXS-
driven MD is also suitable to interpret wide-angle data in
a future study.

The three examples illustrate that SWAXS-driven MD is
capable of refining structures against SWAXS data, which
we consider as the primary application of the method.
In turn, from a molecular-dynamics perspective, all three
g SWAXS-driven MD. Imposed SWAXS-derived forces at this simulation

ight green) and closed LBP (red), from 20 to 100-ns segments of equilib-

XS-driven MD in (D–G). (D and F) Domain separation dsep and (E and G)

G), using parameters of kc ¼ 1000, t ¼ 1 ns. To see this figure in color, go
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examples also highlight that SWAXS data help the simula-
tions to overcome common limitations of MD due to limited
sampling or inaccurate force fields.
LBP

LBP is a bacterial periplasmic protein that contains a ligand
recognition site positioned between two globular domains
(Fig. 1, A and B). The transition from an open (apo) to a
closed (holo) conformation occurs upon ligand binding
and is observable in SAXS measurements (40). Because
both functional states have been crystallized (41), we used
LBP as a first test case to demonstrate the main principles
of SWAXS-driven MD.

As a control, we first conducted multiple free simulations
of LBP starting from the apo and holo crystal structures.
These free simulations sampled their respective open and
closed conformations (Fig. 2 A, green/red dots), but did
not sample any complete transitions within 100 ns, regard-
less of the presence or absence of ligand at the binding inter-
face (Fig. S3). This lack of sampling shows that MD
simulations alone would be insufficient to predict the apo
state of LBP given only the holo structure, or vice versa.
Such problems are common, because most biologically rele-
vant transitions occur on time scales inaccessible to MD.
FIGURE 2 (A) PCA of unbiased simulations, SWAXS-driven MD, and rigid-

and twisting motions. (Red and green dots) Ensembles of unbiased simulation

target SWAXS curves for SWAXS-driven MD (Fig. 1 C). (Black dots) Cluster ce

(B and C). (Orange/blue dots) Conformations during SWAXS-driven MD in th

To guide the eye, smoothed SWAXS-driven trajectories are shown. (Black arro

(Plus and cross symbols) Conformations predicted by rigid-body modeling, us

control SASREF runs of holo-LBP targeting holo spectra (holo / holo); (gr

and (blue) apo / holo. (B and C) SWAXS-driven trajectories in (A) plotted b

the target ensembles are indicated (green/red dashed lines) with errors (gray) s

at t ¼ 10 ns, with t ¼ 1 ns, as compared to the target curves from Fig. 1 C. (Ora

(E) P(r) curves of the spectra in (D) computed with GNOM (55). See the Supp
SWAXS-driven MD using a nonweighted SWAXS potential

In the following, we show rapid conformational transition of
LBP by using information from computationally generated
SWAXS curves. SWAXS curves of LBP were computed
from apo and holo ensembles sampled in free simulations
(Fig. 2, green/red dots), producing the target curves in
Fig. 1 C. The radius of gyration Rgyr of these curves agree
with SAXS measurements of a homolog LIVBP (78% iden-
tity), although it is significantly smaller than crystallo-
graphic values (Table 1). This suggests that our calculated
LBP SWAXS curves are consistent with experimental solu-
tion conditions.

Multiple SWAXS-driven MD simulations were started
from closed LBP and targeting the SWAXS curve of open
LBP, and vice versa. SWAXS-driven MD based on a non-
weighted coupling potential (Eq. 2) is presented in the
following, and simulations based on a weighted potential
(Eq. 3) are discussed further below. As shown in Fig. 1,D–G,
coupling of simulations to target SWAXS curves of open and
closed LBP induced rapid changes in the domain separation
dsep toward target values. At the end of the transition, the
protein exhibited a reasonably low root-mean-square devia-
tion (RMSD) to the cluster center of the open and closed
ensembles, which were used compute the target SWAXS
curves (Fig. 2, B and C). In addition, and as expected,
body modeling. PCA vectors 1 and 2 approximately correspond to opening

s of closed (red) and open (green) LBP, which were used to compute the

nter of closed and open ensembles used for the RMSD analysis in subplots

e opening (orange) and closing simulation (blue). (Orange and blue lines)

ws) Forces derived from ESWAXS, mainly acting along the opening motion.

ing SASREF. Analogous colors to SWAXS-driven MD are adopted: (red)

een) apo-LBP targeting apo spectra (apo / apo); (orange) holo / apo;

y RMSD to the cluster-center conformation. For reference, the RMSD of

hown in background. (D) Scattering-curves of SWAXS-driven trajectories

nge and green curves) For clarity, these curves have been vertically offset.

orting Material for details. To see this figure in color, go online.
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FIGURE 3 Energy landscape of ESWAXS during SWAXS-driven simula-

tions of LBP, binned along the first two PCA eigenvectors (see Fig. 2). The

analysis demonstrates that the SWAXS data mainly encodes structural tran-

sitions along the opening motion. Transitions along the twisting motion are

not coupled by SWAXS restraints, and hence require sampling under the

influence of the MD force field. (A) Simulations targeting open LBP.

(B) Simulations targeting closed LBP. Data was collected from the equili-

bration period (4–10 ns, t > 4t). In order to sample the ESWAXS landscape

exhaustively, a total of 30 trajectories were simulated for each figure

using coupling strengths of kc ¼ 100, 300, and 1000. ESWAXS was scaled

to match ESWAXS simulations using kc ¼ 1000. To see this figure in color,

go online.

TABLE 1 Radius of gyration of apo and Phe-bound LBP

Structures Crystallography Simulation LIVBP (SAXS)

Apo 2.80 2.28 2.33 5 0.02

Holo 2.33 2.19 2.23 5 0.02

Apo- and holo-LBP structures from PDB:1USG and PDB:1USI, respec-

tively. Simulation data reported from 10 � 50 ns replicates with SD.

Calculated using CRYSOL default parameters (20). LIVBP data from

Olah et al. (40).
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the SWAXS curves and pair distribution functions P(r)
computed from the final frames of the SWAXS-driven MD
are in close agreement to the target curves (Fig. 2, D and E).
A moderate ESWAXS bias of 15–30 kJ/mol (Fig. 1, E and G)
was sufficient to trigger rapid transitions, which was fol-
lowed by an equilibration toward the target state within
10 ns (Fig. 2 A). Decomposing ESWAXS into contributions
from different scattering vectors q demonstrate that transi-
tions were primarily driven by the difference signal at
2 nm�1 (Fig. S4). We note that during the opening transition
(Fig. 1 F), some overcompensation occurred due to memory
effects (Eq. 6), but such effects can be lessened by reducing
the constant kc at the cost of slower transitions (Fig. S5).

The driving forces for the conformational transitions are
further analyzed Figs. 2 A and 3, which visualize transition
pathways and ESWAXS, respectively, along the eigenvectors
from a principal component analysis (PCA). As shown in
Fig. 2 A, we observed a further relaxation of LBP along a
twisting motion after the equilibration of ESWAXS, both after
opening and closing transitions (orange and blue curves,
respectively). This twisting motion is almost perpendicular
to SWAXS-derived forces (arrows in Fig. 2), suggesting
that the MD force field is primarily responsible for these
twisting relaxations, and not the SWAXS data. The ESWAXS

landscape of LBP in analyzed in detail in Fig. 3, showing a
large gradient of ESWAXS along the opening/closing motion.
In contrast, ESWAXS is nearly invariant along the twisting
motion, suggesting that only the MD force field can discrim-
inate between states of different twist. Taken together, we
find that the MD force field is required to complement the
SWAXS signals in order to characterize the LBP solution
states, while the SWAXS signals trigger the conformal
transitions along the opening motion within the accessible
simulation time.

Comparison to rigid-body modeling

The role of the applied force field was further investigated
by comparing the SWAXS-driven MD to rigid-body
modeling, as, for instance, implemented in the SASREF
tool of the ATSAS software package (42). In contrast to
atomistic MD simulations, SASREF employs rigid-body
motions to minimize the intensity difference with the
experiment, and further ranks complexes using a knowl-
edge-based scoring function over residue-residue contacts.
Details of our ATSAS modeling are given in the Supporting
Biophysical Journal 108(10) 2573–2584
Material. To compare SWAXS-driven MD and ATSAS
approaches, the final structures from rigid-body modeling
are shown as plus-symbols in the PCA projection in
Fig. 2 A, and their RMSDs to cluster-center structures are
shown in Table 2.

We found consistently smaller RMSD of LBP structures
derived by SWAXS-driven MD, as compared to rigid-
body modeling. In particular, a large spread of ATSAS
apo-LBP models along the second PCA vector is seen,
loosely corresponding to the twisting motion found in
SWAXS-driven MD (green plus symbols in Fig. 2 A). This
suggests that ATSAS modeling lacks information necessary
to refine a correct twist between the N- and C-terminal
domains, despite additional distance constraints. In compar-
ison, holo-LBP models found by ATSAS are of comparable
accuracy to those found by SWAXS-driven MD, implying



FIGURE 4 Snapshots of T- (top left), R- (top right), and R0-ATCase,
viewed from one of the three regulatory dimers (orange and red; left, center

and right domains) connecting the opposing catalytic trimers (yellow and

tan; top and bottom domains). (Black arrows) Concerted motion connecting

T 4 R 4 R0, involving an expansion along the trimer separation d and

corotation of trimers in f. To see this figure in color, go online.

TABLE 2 LBP RMSD versus cluster-center structures, for

conformations determined by ATSAS rigid-body modeling or

SWAXS-driven MD

Description RMSDapo RMSDholo

ATSAS fitting

Apo / apo 4.40 5 1.09 6.29 5 0.77

Holo / apo 3.13 5 0.24 5.08 5 0.16

Holo / holo 3.69 5 0.22 2.34 5 0.30

Apo / holo 3.93 5 0.85 2.77 5 1.58

SWAXS-driven MD

Apo / apo 1.47 5 0.34 4.43 5 0.44

Holo / apo 2.23 5 0.59 4.33 5 0.65

Holo / holo 4.41 5 0.62 1.38 5 0.34

Apo / holo 3.35 5 0.37 2.08 5 0.61

ATSAS models were built using N- and C-terminal domains of the apo- and

holo-LBP crystal structures as rigid bodies, and targeting the ensemble

curves in Fig. 1 C. SWAXS-driven MD values obtained by averaging the

last nanosecond of five independent simulations, conducted at force con-

stant kc ¼ 1000. See the Supporting Material for details.
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that both ATSAS- and SWAXS-driven MD possess suffi-
cient information here. We further rationalize this difference
from the ESWAXS landscape of apo- and holo-LBP (Fig. 3).
While the holo-LBP state is relatively well defined in
ESWAXS, the apo-LBP landscape is almost flat along the
twisting motion. This explains the large potential distribu-
tion in ATSAS modeling, while SWAXS-driven MD addi-
tionally benefits from the information provided by the MD
force field.

SWAXS-driven MD using an uncertainty-weighted SWAXS
potential

In order to explicitly account for uncertainties of I(q), we
carried out SWAXS-driven MD of LBP using the weighted
SWAXS potential of Eq. 3. Because we here coupled the
simulations to calculated SWAXS curves, we assumed that
the relative experimental error linearly increases with q,
resembling the errors of the experimental data we used in
a previous study (26). The uncertainties se(q), sbuf(q), and
sc(q) are shown in Fig. S6, demonstrating that, for the
LBP model, the uncertainty of the buffer density dominates
at low q, while the experimental errors dominates at high q.
Hence, disregarding any of these error contributions would
lead to a significant underestimate of the overall uncertainty
for certain q ranges. The dsep, ESWAXS, and the PCA analysis
of multiple transitions are visualized in Fig. S7. These
transitions resemble those from the nonweighted SWAXS-
driven MD, suggesting that the functional form for ESWAXS

plays only a minor role for LBP. For simplicity, we therefore
applied the nonweighted coupling scheme for the remainder
of the article.
ATCase

ATCase is the first member of the pyrimidine synthesis
pathway. It is composed of 12 subunits with three regulato-
ry dimers surrounding a pair of catalytic trimers (Fig. 4).
Two conformational states T and R corresponding to low
and high activities are known, related by a concerted tran-
sition that is triggered by binding of a cosubstrate and
further regulated by nucleotide binding (37,43). Whereas
the crystallographic T state is compatible with SAXS data
of T, Fetler and Vachette (37) and Svergun et al. (44)
noticed that the solution state of R is more expanded as
compared to the crystal structure of R (here termed Rcryst).
Hence, we used SWAXS-driven MD to characterize the
solution state of R, based on published experimental
SAXS data (37).

To begin, we conducted conventional simulations start-
ing at T and Rcryst. SAXS curves computed from these
simulations are compared to experimental data in Fig. 5 A,
and conformational transitions are quantified in Fig. 5 B
using the center-of-mass distance d as well as the rota-
tional angle f between the two trimers (Fig. 4). Simula-
tions starting at T were highly stable, and SAXS curves
computed from the simulations favorably agree with avail-
able SAXS data (Fig. 5 A, red solid line versus red/orange
crosses). In contrast, simulations that are restrained to
Rcryst are incompatible with experimental SAXS data, sug-
gesting that the crystal lattice stabilized a compact confor-
mation (Fig. 5 A, purple solid line versus green/blue
crosses). Indeed, ATCase in free simulations starting
from Rcryst spontaneously expand, coupled to relative rota-
tion of the two trimers (Fig. 5 B, green). That transition
leads to an improved agreement with SAXS data of the
R state at q z 0.8 mm�1 (Fig. 5 A, green curve). However,
none of our equilibrium simulations could explain the
difference between the R and T curves at q z 2 mm�1

(Fig. 5 A). These findings suggest that our free MD
Biophysical Journal 108(10) 2573–2584



FIGURE 5 (A) SAXS curves of free ATCase simulations starting from crystallographic Tcryst (solid dark-red) or crystallographic Rcryst (solid light-green),

and position-restrained to Rcryst (dotted purple). (Blue dashed line) SWAXS-driven MD targeting the experimental curve Rexp. The ensembles used to

compute solid and dashed curves in (A) are shown as dots of the same colors in subplots (B) and (C). Experimental curves (37), shown as pluses/crosses,

were fitted with function Ifit ¼ fIe þ c, as described previously (26). Experimental curves are shown for both ATP-bound (green/tan pluses) and ATP-

free states (blue/red crosses). (B) Unbiased and position-restrained ensembles of (A) plotted along relative catalytic trimer rotation f and separation d. Legend

shown below the plot. (Diamonds) Starting crystallographic positions (Tcryst and Rcryst); (dots) simulation frames. Note that the position-restrained R

ensemble (Rposres, purple dots) is hardly visible behind the (green) diamond. (C–F) SWAXS-driven MD simulations; (C) 6 � R / R, (D) 6 � R / T,

(E) 6 � T / R, and (F) 5 � T / T. (Gray lines) Simulations coupled to ATP-bound SAXS curves RATP,exp/TATP,exp. (Black lines) Simulations coupled

to ATP-unbound SAXS curves RexpTexp. (Blue dashed line) Ensemble from SWAXS-driven MD targeting Rexp used to compute the (blue dashed) SAXS

curve in (A). (Red dashed line) Control simulation targeting a computed unbiased R-state curves. (Circles) Last frames. Trajectories span 20–23 ns, using

parameters of t ¼ 1 ns and kc ¼ 500. To see this figure in color, go online.
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simulations did not fully describe the solution R state,
further emphasized by variations observed between indi-
vidual simulation trajectories.

Results from SWAXS-driven MD simulations are pre-
sented in Fig. 5, C–F, starting from final frames of free
R or free T simulations. Associated I(q) and P(r) curves
are shown in Figs. S9 and S10. As controls, T / T sim-
ulations are stable, and R / T simulations reach a closed
position near T (Fig. 5, D and F). Here we find that further
closure is prevented by flexible loops of the catalytic
trimer, whose rearrangement is necessary for reforming
the T-interface. Because such details are not encoded
in the SAXS signal, longer simulations or enhanced sam-
pling techniques would be required to fully reach the T
state.

Simulations coupled to the R curve rapidly open and
consistently suggest that the trimers are on average sepa-
rated by ~6.3 nm in solution, ~0.7 nm more as compared
to Rcryst (Fig. 5, C and E). Compared to free simulations
and previous modeling efforts, however, the SWAXS-driven
simulations suggest ATCase conformations characterized
by a further trimer rotation, corresponding to smaller f

(Fig. 4, R0). We note that after releasing the SWAXS-derived
potential, those simulations partly returned to larger f an-
gles, suggesting that the simulations were not yet able to
accommodate a stable rotated structure within the simula-
tion time of ~20 ns (Fig. S9).

To identify the subset of experimental scattering data that
encourages rotated R0-ATCase, we conducted additional
Biophysical Journal 108(10) 2573–2584
SWAXS-driven MD with restricted coupling ranges. The
two main features of R-SAXS were coupled to individual
simulations: 1) ~0.8 nm�1 or 2) at 2 nm�1 (Fig. S8).
Coupling only to the 0.8 nm�1-range fixed the trimer
separation near 6.3 nm but induced no additional rotation,
suggesting that this feature mainly encodes the trimer sepa-
ration. In contrast, coupling to the feature at 2.0 nm�1 was
found to influence trimer rotations f, yielding R0-con-
formers similar to those found by the coupling to the
entire q range. These findings further suggest that highly
rotated conformers are significantly populated in the
solution state of ATCase. More importantly, the analysis
demonstrates how SWAXS-driven MD interprets features
of a SWAXS curve in terms of specific collective modes
of the biomolecule.
Nuclear exportin 1

CRM1 is a nuclear exportin composed of 21 HEAT repeats
arranged in a ringlike structure. Its structure-function
relationships are complex: crystallographic studies yield a
ring-open conformation for the apo form (45), but closed
when in complex with cofactors or cargo (46,47). However,
cryo-electron microscopy identifies different degrees of
openness apo-CRM1 (45). Here, we revisited CRM1 by
means of SWAXS-driven MD coupled to experimental
SAXS patterns (48), to understand the solution state of
apo CRM1.
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To test whether MD simulations alone would provide a
consistent solution ensemble of CRM1, we first simulated
the open apo-CRM1 using two different force fields and
salt concentrations (Fig. 6, A and C, Fig. S11). Surprisingly,
we observe spontaneous ring-closure under CHARMM22*
(49) but ring-opening under the AMBER99sb force field
(50). Simulations with 100 mM NaCl instead of only coun-
terions exhibited slightly higher ring-open populations, but
a significant force-field bias remains. These discrepancies
suggest that the energy surface underlying CRM1 confor-
mations is very shallow and, hence, highly sensitive to
force-field differences. Furthermore, the SAXS patterns of
these distributions suggest that neither distribution correctly
reproduced the experimental data (Fig. 6 B).
FIGURE 6 (A) Snapshots of CRM1 simulated with the AMBER99sb

(orange, left) and CHARMM22* (green, right) force fields, respectively,

in a ring-open and ring-closed conformation. (B) Predicted SAXS curves

of open (AMBER99sb, lighter orange) and closed (CHARMM22*, darker

green) CRM1 computed from the last 30 ns of the simulations (D); (dashed

black line) fitted, smoothed experimental curve; (solid gray) error bars. (C)

Display of 50-ns trajectories and last 30-ns histograms of free CRM1 in

AMBER99sb (lighter orange) and CHARMM22* (darker green), plotted

according to the atomic difference vector between open (PDB:4FGV) and

closed (PDB:3GJX) CRM1, the same metric as used in Monecke et al.

(45) Significant force-field dependence is found. (D) A display of the

40-ns SWAXS-driven MD of CRM1, exhibiting no dependence on the force

field. To see this figure in color, go online.
Fig. 6 D presents trajectories of SWAXS-driven MD
started from the final frames of free MD simulations. Asso-
ciated I(q) and P(r) curves are shown in Fig. S12. We find
that SWAXS-driven MD suggests an intermediate average
solution state of CRM1, which is more open than predicted
by CHARMM22* but more closed than predicted by
AMBER99sb. The SAXS curve of the refined ensemble
(Fig. S13 B) resembles that of the target curve. Only small
deviations at very small angles remain, which we did not
couple to the simulations, in order to exclude concentra-
tion-dependent experimental artifacts. We further verified
the refinement by performing the c2free analysis suggested
by Rambo and Tainer (12) over individual SWAXS-driven
trajectories (Fig. S14). Although the SAXS curve for the
total ensemble of 10 replica is in good agreement to exper-
iment, we find significant variations in individual c2free, sug-
gesting that the MD force field imposed tight restraints on
possible conformations, and that the refinement is far from
overfitting.

The alignment of ring-geometries to an intermediate
conformation, however, does not exclude the possibility of
a more heterogeneous open/closed solution ensemble. We
therefore modeled the CRM1 ensemble as a linear combina-
tion of open and closed states from CHARMM22* simula-
tions, and evaluated the fits with our c2 metric (Eq. S1 in the
Supporting Material) and the c2free metric (Fig. S1). We
found that our c-metric reports an optimum ratio of 60%
open/40% closed CRM1, while the c2free-metric reports
~75% open populations. Although the exact ratios differ,
both are comparable to 2:1, suggested by cryo-electron
microscopy experiments (45).

Thus, the ensemble-averaged SAXS data encodes the
average solution structure, but it is in this case insufficient
to determine the variance of the open/closed distribution.
In order to interpret such heterogeneous ensembles, it will
be highly interesting to couple multiple replicas of a simu-
lation to one ensemble-averaged SWAXS curve, thereby
also refining the relative weights of the replicas. Because
that approach will require additional care to avoid overfit-
ting, we leave that extension to a future study.
CONCLUSIONS

Many proteins carry out their biological function via con-
formational transitions. High-resolution crystallographic
structures are frequently only available for one state, such
as a ground state or a holo state, whereas SWAXS data
may be available for the complete conformational cycle.
However, due to the large number of degrees of freedom,
the interpretation of the SWAXS data in terms of conforma-
tional transitions would be ill defined without prior physical
knowledge. Starting from related crystallographic struc-
tures, we here employed explicit-solvent MD simulations
to refine structures against SWAXS curves. The simulations
provide an accurate prior distribution of accessible
Biophysical Journal 108(10) 2573–2584
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conformational states, and they are not subject to the restric-
tion associated with rigid-body MD or normal mode fitting,
which were previously used to refine structures against
SAXS data (51,52). The commitment to explicit solvent
and atomistic models of scattering also allows the accurate
calculation of curves at wide angles (25,26,33). The
explicit-solvent calculations require, apart from an overall
scaling factor for the intensities, only one additional fitting
parameter that accounts for uncertainties in the buffer
subtraction. In particular, and in contrast to implicit solvent
calculations, they do not require fitting of the solvation
layer or excluded solvent, thus retaining the ability to differ-
entiate small alterations in protein structure (26).

The three biomolecular systems presented here highlight
the complementarity between SWAXS and MD techniques.
As frequently found for biomolecular systems, we observed
in all three examples that conventional MD simulations
were insufficient to fully characterize the solution states
of the proteins, due to limited sampling (LBP and
ATCase) or force-field inaccuracies (CRM1). Incorporating
SWAXS curves into the simulation reduced a possible force-
field bias and accelerated conformational transitions without
prior knowledge of possible reaction paths. In particular, the
algorithm does not push the biomolecule along preselected
collective modes such as PCA or normal modes, as would
be common for many accelerated MD algorithms. Instead,
the information of the SWAXS curve is merely added to
the MD force field, and the simulation decides which collec-
tive motions are most appropriate to meet both experimental
and physical restraints. In turn, during structure refinement,
the MD simulation added physical knowledge to the
SWAXS curves, thereby 1) restricting the refinement to
physically realistic motions and 2) allowing further relaxa-
tion along collective motions that are not encoded in the
SWAXS curve.

We validated SWAXS-driven MD using two different
metrics of the coupling potential. First, a nonweighted
metric on a logarithmic scale was applied (Eq. 2), which
is conceptually simple, numerically stable and, hence, suit-
able from a practical perspective. In particular, this metric
is rather insensitive to poor buffer matching, which is a
common problem in SWAXS experiments, and it imposes
reasonable statistical weights on small versus wide-angle
data. Second, a more rigorous coupling metric was imple-
mented by imposing the overall uncertainties as inverse
weights, given by experimental se and calculated sc statis-
tical errors as well as a systematic error sbuf from the buffer
subtraction (Eqs. 3 and 4). We found incorporating sbuf to
be crucial for SWAXS-driven MD, in order to account for
cases of poor buffer matching. Ignoring sbuf and instead
applying se alone would impose spuriously high weights
to small q, which frequently lead to numerical instabilities
during SWAXS-driven simulations (not shown). The error
sbuf, on the contrary, dominates the overall error at small
q, thereby reducing those weights to physically justified
Biophysical Journal 108(10) 2573–2584
values. As a consequence, the uncertainty-weighted
SWAXS-driven MD simulations were numerically stable,
capable of interpreting intensity variations over the entire
q range. However, finding a rigorous procedure to distribute
the weights along q may require more research.

Our implementation of SWAXS-driven MD uses certain
heuristic parameters to achieve efficient sampling: coupling
strength kc, and memory time t. Their optimal choices
depend upon the energy landscape of the system, and we
noted above that adopting a constant kc does risk temporary
overcompensation, as observed for LBP (Fig. 1 F). We are
investigating possibilities for adaptive coupling schemes
that would avoid such artifacts arising from an ad hoc selec-
tion of these parameters. For instance, it will be interesting
to test the effect of t on the heterogeneity of the refined
ensemble, and to compare it with the protein flexibility as
quantified from Kratky and Porod-Debye plots (53). In addi-
tion, the calculations shown here required us to fit experi-
mental curves against calculated curves before starting the
SWAXS-driven MD (Eq. S1 in the Supporting Material),
in order to remove some of the uncertainty from poor buffer
matching. In a future study, we instead aim to include the
fitting step explicitly into the coupling scheme, if possible
by using an inferential (Bayesian) approach (54). In addi-
tion, future efforts aim to render the methods shown here
easily accessible to researchers that have little computa-
tional background. We note that SWAXS-driven MD is
applicable to neutron scattering data, and it can be straight-
forwardly generalized to more heterogeneous ensembles by
coupling multiple replicas of the biomolecule simulta-
neously to a target SWAXS curve. We expect SWAXS-
driven MD presented here, complemented by such future
developments, to become a useful protocol for biomolecular
research.
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Simulation Details

Choice and preparation of source coordinates

Apo and holo structure of LBP were taken from protein data bank (PDB codes 1USG and 1USI, respec-

tively) (1).

The CTP-bound ATCase from [PDB code 1ZA1 (2)] and ATP-bound ATCase from [PDB code 7AT1

(3)] are commonly accepted to represent the crystallographic T and R states, respectively. Bound ATP

and CTP were retained during all simulations, but the substrate mimic PALA was removed from the R

coordinates. Although it is necessary in-vivo to form the R state, we observed no collapse back to T

during 50 ns-simulations (see main text).

CRM1 simulations were based on the ring-open structure from chaetomium thermophilum CRM1

[ctCRM1, PDB code 4FGV (4)], as an appropriate model for mammalian CRM1 in the absence of binding

partners (40% sequence identity). ctCRM1 represents the most complete structure and also retains a

C-terminal helix stretching across the ring. In comparison, the structure of mouse CRM1 (PDB code

3GJX) (5) was not suitable due to non-trivial rearrangement upon ranGTP binding, while the structure

of human CRM1 (PDB code 3GB8) (6) lacks several long loops and the N-terminal HEAT repeat and

would require speculative modeling. Missing loops near the N-terminus of ctCRM1 were modelled using

the kinematic loop modeling module from the Rosetta3.4 suite (7).

Simulation setup and parameters

Equilibrium simulations were conducted using the GROMACS 4.6 simulation software (8). SWAXS-

driven MD simulations were conducted using our in-house modification of GROMACS 4.6. Hydrogen

atoms were added with the pdb2gmx software (8), keeping co-crystallised water molecules and the ligands

noted above. The proteins were solvated in a rhombic-dodecahedron box with 15∼10 Å buffer regions,

and ionised to 100 mM NaCl, if not stated otherwise. CRM1 simulations without salt were neutralized

by Na+ counterions. Parameters for LBP and ATCase simulations were taken from the CHARMM27
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and CHARMM22* force fields, respectively (9–11). CRM1 was simulated either with the Amber99sb or

with the CHARMM22* force field, as noted in the main text (12). Water was described by the TIP3P

water model (13).

Electrostatic interactions were computed using the particle-mesh Ewald algorithm (14). Short-range

dispersive interactions were modeled by a Lennard-Jones potential using dual-range cut-off between 10

and 12 Å using force-switching. Water molecules were kept rigid using the SETTLE algorithm (15),

and all other bonds were constrained using P-LINCS (16). Hydrogen bonds were described by virtual

interaction sites, allowing a time step of 4 fs (17). The pressure was kept at 1 bar using the Berendsen

barostat during initial equilibrations and the Parrinello-Rahman barostat during equilibrium simulations

(time constant 1 ps) (18, 19). Likewise, the temperature was controlled at 298.15 K using velocity-rescaling

during equilibration and using Nosé-Hoover thermostat during equilibrium simulations (time constant

5 ps)(20, 21). Protein and non-protein atoms have been coupled to separate thermostats. Stochastic

dynamics integrators (22) were used during SWAXS-driven MD simulations because SWAXS-driven MD

does not conserve energy, which might otherwise results in gradual heating of the system.

Free (unbiased) simulations

Each system was equilibrated over 2 ns using stepwise decreasing restraints to relax the solute, first

releasing the sidechains and then the backbones. From each equilibrated system, a number of free (i.e.,

not SWAXS-driven) simulation were conducted, as listed in Table S1. SWAXS curves from equilibrium

simulations were computed as explained previously (23). The principal component analysis (PCA) for

LPB was conducted on the Cα atoms, after combining free 100-ns simulations of apo and phenylalanine-

bound LBP.

SWAXS-driven simulations

Target experimental patterns for ATCases have been transcribed from Fetler et al. (24), while the target

data for ctCRM1 were provided by the Ralf Ficner group. In the latter case, sample and buffer intensities

were obtained to conduct and verify background matching in-house. To reduce the influence of noise

upon WAXSMD simulations, the buffer-subtracted curve was passed through a 20-point running average.

This smoothed curve was used in SWAXS-driven MD. For modeling the solution ensemble of CRM1 as a

combination of open and closed states, the unsmoothed curve was adopted, allowing for direct comparison

between our chi-metric and χ2
free validations according to Rambo and Tainer (25). In this work, we adopt

convention Isample − Ibuffer for buffer subtraction.

Before coupling the simulations to an experimental SWAXS curve, the experimental curves were fitted

to a SWAXS curve calculated from a short equilibrium simulation. Accordingly, the experimental curve

was fitted by minimizing

χ2 =
∑
i

[
log Ic(qi)− (f log Ie(qi) + c)

]2
, (S1)

where f adjusts the arbitrary overall scale of scattering curves, and c is an offset that approximately

absorbs experimental uncertainties due to the buffer subtraction. Fitting only these two parameters, we
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recently found excellent agreement between calculated and experimental WAXS curves (23). Here, the

fit was conducted on a log scale, compatible to the coupling potential ESWAXS in eq. 2.

Parameters applied for SWAXS-driven MD are listed in Table S1. A second simulation for ATCase

R→ R was conducted at a higher kc to resolve the discrepancy at 2 nm−1, producing the blue ensemble

in the main text and Fig. S9. As noted the main text, the simulation frames were superimposed onto

a reference structure in reference orientation (ω) before evaluating the averages in eqs. 7, 8, and 13 (in

main text), using a least-square fit on the Cα atoms. For each protein, the same reference structure was

used for all SWAXS-driven simulations.

The spatial envelope for LBP was constructed around simulation frames after combining 100-ns

trajectories of apo and phenylalanine-bound LBP, keeping a distance of 0.7 nm between protein and

envelope. The envelope was constructed as explained previously (23). Because the maximum extent of

CRM1 and ATCase were not known prior to SWAXS-driven simulation, we assigned spherical envelopes

with radii 5.2 and 8.8 nm, respectively, based on free simulations and solvation layer thickness of 0.7 nm.

A snapshot of each system with its envelope are shown in Figure S1. The same envelope was shared

across all SWAXS calculations of the same system.

Rigid-body modeling

Rigid body modeling was conducted with SASREF(26) starting either from apo- or holo- LBP crystal

structures, and targeting the computed SAXS curve of either open or closed LBP ensembles in Fig. 1.

This resulted in four sets of models, colored as plus symbols in Fig. 2). The N-and C-terminal domains

of LBP were defined as follows: the N-terminal domain spanning D1-L120 and P249-K327, and the

C-terminal domain spanning D121-M248 and G332-K346. Four linker residues were removed between

K327 and G332. To constrain the possible quaternary arrangements, constraints at 3, 4, 5, 6 and 7 Å (in

steps of 1 Å) were imposed between L120-D121 and P249-M248. Five replicates were conducted for each

constraint value, resulting in a total of 25 modeling attempts per structure-SAXS combination.

P(r) calculations with GNOM

The program GNOM (27) was used to back-calculate the pair distribution function P(r) from simulated

and experimental curves. For each protein and curve, a range of maximum extent Rmax values is chosen

to compute candidate P(r) curves. The curve with the highest fitness score calculated by GNOM was

chosen, subject to the condition that it did not exhibit a large region of ∼0 density. These resultant Rmax

values are also reported in Table S2. In order to maintain comparability with experimental data, the

maximum-q of the simulated SWAXS curves considered for P(r) calculations for ATCase and ctCRM1

were set a 5 nm−1. The cut-off for LBP was set at 10 nm−1.

Computational resource usage

All simulations were conducted on the GWDG cluster at the Georg-August University Göttingen, and at

the North-German Supercomputing Alliance (HLRN) cluster in Hanover using between 16 to 192 CPU

cores depending on architecture and system size. SWAXS-driven MD simulations take approximately
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10% longer than conventional MD simulations. According to GROMACS internal cycle-accounting, the

SWAXS-related calculations took (relative to total computing time) 7.6± 1.4% during LBP, 11.7± 2.2%

during ATCase, and 9.9± 2.0% during ctCRM1 simulations.
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Supplementary Tables

Table S1. Simulation parameters for free ensembles. Replicas are reported per functional state. Initial teq ns
discarded as equilibration.

Variables LBP ATCase bs-RNase ctCRM1

replicas 10 (ensemble),1 (WAXS) 3 5 10
tsim [ns] 50,100 T : 20, R: 40 100 50
teq [ns] 10 T : 0, R: 20 20 20

Table S2. Simulation Parameters for SWAXS-driven MD, and structural information used to assist in selection
of scattering vectors. Maximum extent, Rmax, taken from GNOM calculations, and converted to width of a
Shannon channel qShannon = π/Rmax, and total number of Shannon channels within coupling range nShannon.
Scattering vectors coupled in SWAXS-driven MD are distributed linearly between qmin and qmax, resulting in a
corresponding separation qsep that is directly comparable to qShannon. *: Additional ATCase simulations with
single-q-point restraints are conducted with increased kc.

System LBP ATCase ctCRM1

Rmax [nm] 6.2 13 11
qShannon [nm−1] 0.51 0.24 0.29

nShannon 15.8 9.1 8.4
qsep [nm−1] 0.5 0.2 0.2

nq 16 11 12
qmin [nm−1] 0.5 0.2 0.4
qmax [nm−1] 8.0 2.2 2.6

kc 100∼3000 500 (2500)* 1000
τ [ns] 1.0 1.0 2.5
δt [ps] 2.0 2.0 2.0

Total simulation time [ns] 10 20∼23 40
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Supplementary Figures

Figure S1. Biological systems presented in this paper, displayed to the same scale. The solute and bound
ligands (if any) are shown in cartoon and stick formats, respectively. Solvating ions are shown as small spheres,
while water molecules are abstracted for clarity. Each solute is enclosed in an envelope, in which all atoms are
considered for SWAXS scattering calculations (see Methods of the main text). (A) LBP in the apo-state. (B)
ctCRM1 in its ring-open state. (C) ATCase in the R-state, with bound ATP. Catalytic trimers and regulatory
dimers are colored yelow and red, respectively.
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regime, while the right panel shows I(q) over 8 nm−1 < q < 25 nm−1 in the WAXS regime. Error bars (where
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Figure S7. Opening and closing trajectories of SWAXS-driven MD simulations of LBP at kc = 1 and τ = 1 ns,
using the errors as inverse weights instead of uniform weighting (eq. 3 of the main text, and Fig. S6). (A/C)
smoothed domain separation dsep and (B/D) SWAXS potential ESWAXS versus simulation. (A/B) for closing
transitions; and (C/D) for opening transitions. (E) PCA analysis of the black trajectory in (A-D), using the same
color scheme as Fig. 2. The green and red spheres indicated the apo and holo crystal structures, respectively.
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Figure S8. (A) Decomposition of ESWAXS into contributions from different scattering vectors q, shown for
one typical T → R trajectory of ATCase. Main figure: ESWAXS verus time; inset: trimer separation dsep and
relative rotation φ during that simulations, with positions every 5 ns labelled with diamonds. The decomposition
shows that, while the rapid expansion during the first transition is triggered by restraints near q = 1 nm−1, the
subsequent rotation along φ was triggered by restraints at q = 2 nm−1. (B) Partial SWAXS-driven MD trajectories
of T and R ATCase, coupled to 0.2∼ q∼1.6 nm−1 in order to fit only the first SAXS peak. Green lines indicate
smoothed R→ T trajectories, and red lines indicate smoothed T → R trajectories. Exclusion of the second peak
during SWAXS-driven MD results in transitions primarily along dsep with only diffusive rotation along φ. (C)
Partial R → R and R → T SWAXS-driven trajectories coupled only to the second peak signal at q = 2 nm−1.
Red lines indicate R→ R trajectories using kc = 500, maroon lines indicate R→ R trajectories using kc = 2500,
and green lines indicate R→ T trajectories using kc = 500. Those trajectories demonstrate that coupling purely
to the SAXS signal at q = 2 nm−1 results in a rotation along φ without any significant change in dsep.
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Figure S9. SAXS curves and trimer configuration of ATCase ensembles in free simulations before applying
SWAXS-derived restraints (grey, dotted), during SWAXS-driven simulations (red and blue), and in free simu-
lations after releasing the SWAXS-derived restraints (black). Good agreement with experimental R is found at
low φ (blue line and dots in B). After releasing the SWAXS-derived restraints, the simulations partly returned to
the solution R in free simulations. Insets show corresponding trajectories along the trimer separation dsep and
relative trimer rotation φ in their respective colors. (A) Trajectories starting from the T -state. (B) Trajectories
starting from the R-state.
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Figure S10. Pair distribution functions P (r) for ATCase, calculated using GNOM based on curves in Figures 5A
and S9. (A) P (r) curves for ATCase. Color scheme as follows – Red-solid: T-ATCase unbiased simulations. Red-
dashed: T-ATCase experiment. Purple-solid: R-ATCase unbiased position-restrained simulations. Blue-solid:
R-ATCase unbiased simulations. Blue-dashed: R-ATCase experiment. (B) P (r) curves for ATCase during and
after SWAXS-driven MD. Color scheme as follows – Blue-dashed: Experimental R-ATCase, as in A. Red-dashed:
T-ATCase driven to R-state spectra. Black-dashed: Relaxed T-ATCase after release of SWAXS constraints. Red-
solid: R-ATCase driven to R-state spectra. Black-solid: Relaxed R-ATCase after release of SWAXS constraints.
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Figure S11. Conformations of CRM1 under different conditions, projected onto the difference vector between
open (4FGV) and closed (3GJX) CRM1, following Monecke et al.(4). Location of 4FGV structure shown as grey
lines. Top: Comparison of AMBER99sb and CHARMM22*, solvated only with counterions. Bottom: Comparison
of AMBER99sb and CHARMM22*, solvated with 100 mM NaCl.
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Figure S12. Pair distribution functions P (r) for CRM1, calculated using GNOM based on curves in Figures 6B
and S14A. (A) P(r) curves for ctCRM1. Color scheme as follows – green-solid: ctCRM1 unbiased simulations using
CHARMM22* forcefield. orange-solid: ctCRM1 unbiased simulations using ABER99sb*-IDLN forcefield. black-
dotted: ctCRM1 experiment. black-solid: Hybrid spectra of 45% free-ctCRM1 (ring-closed) and 55% restrained
ctCRM1 (ring-open). (B) P (r) curves for ctCRM1 during SWAXS-driven MD, under CHARMM22*. Color
scheme as follows – black-dashed: target experimental ctCRM1 curve, as in A. grey-solid: individual SWAXS-
driven replica. (C) P (r) curves for ctCRM1 during SWAXS-driven MD, under AMBER99sb. Color scheme as
follows – black-dashed: target experimental ctCRM1 curve, as in A. grey-solid: individual SWAXS-driven replica.
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Figure S13. (A) SAXS curves of CRM1 ensembles under the CHARMM22* forcefield, in ring-open (blue)
and ring-closed (green) conformations, and a linear combination of 60% open/40% closed spectra (cyan). The
unsmoothed experimental spectra (circles) was fit to these curves and displayed for comparison, and curves were
vertically shifted for clarity. Ensembles were generated from position-restrained and free simulations. In the
insets, χ2 fits were conducted on linear combinations of the open and closed curves according to Eq. 1 in the
Supporting Material Methods, and χ2

free fits were conducted according to Rambo and Tainer (25). The q-range for
this fit is set between 0.5∼2.7 nm−1 to avoid the dominating influence of experimental noise at q∼0.3 nm−1. (B)
SAXS patterns of CRM1 ensembles after SWAXS-driven MD. Blue and green curves: CHARMM22* ensembles.
Orange: AMBER99sb ensemble. Black: smoothed experimental curve with errors (grey).
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Figure S14. χ2
free analysis of ctCRM1 SWAXS-driven trajectories using the CHARMM22* (green) or the

AMBER99sb force field (orange). (A) Exponentially averaged calculated SAXS curves of CRM1, at the final
simulation timepoint of SWAXS-driven MD. All replica are plotted as thin lines over the fitted, unsmoothed
experimental data (circles). AMBER99sb curves are vertically offset for clarity. A magnification of the SAXS
region is shown on the inset. (B/C) χ2

free values during SWAXS-driven MD. Values are high due to significant
underfitting at the Shannon bins between 0.5 ∼ 0.7 nm−1, and around 1 nm−1, suggesting that the MD forcefield
imposed tight restraints on possible protein conformations. Thick dotted lines represent χ2

free of the ensemble
SAXS curve in Fig. S13B after averaging over all ten replica. (D/E) ESWAXS values during SWAXS-driven MD,
demonstrating that ESWAXS provides similar information as χ2

free.
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