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Abstract

Small-angle X-ray scattering (SAXS) is a powerful method for tracking conformational
transitions of proteins or soft-matter complexes in solution. However, the interpretation
of the experimental data is challenged by the low spatial resolution and the low
information content of the data, which lead to a high risk of overinterpreting the data.
Here, we illustrate how SAXS data can be integrated into all-atom molecular dynamics
(MD) simulation to derive atomic structures or heterogeneous ensembles that are com-
patible with the data. Besides providing atomistic insight, the MD simulation adds phys-
icochemical information, as encoded in the MD force fields, which greatly reduces the
risk of overinterpretation. We present an introduction into the theory of SAXS-drivenMD
simulations as implemented in GROMACS-SWAXS, a modified version of the GROMACS
simulation software. We discuss SAXS-driven parallel-replica ensemble refinement
with commitment to the maximum entropy principle as well as a Bayesian formulation
of SAXS-driven structure refinement. Practical considerations for running and inter-
preting the simulations are presented. The methods are freely available via GitLab at
https://gitlab.com/cbjh/gromacs-swaxs.

1. Introduction

Understanding the function of biomolecules requires understanding

of their conformational dynamics. An increasingly popular method for

tracking conformational transition of biomolecules is small-angle X-ray scat-

tering (SAXS), which provides structural information that is not accessible

by other techniques. Unlike NMR spectroscopy, which probes local dis-

tances and angles of smaller biomolecules, SAXS provides information on

the overall shape and is applicable to both small and large biomolecules.

Unlike crystallography or cryoelectronmicroscopy, SAXS probes molecules

at ambient temperatures in solution, enabling experiments that track confor-

mational transition after application of external stimuli. The accuracy of

SAXS data has greatly improved over recent years thanks to sample delivery

coupled with size exclusion chromatography (SEC-SAXS), thereby reduc-

ing sample aggregation artifacts, single-photon counting detractors, and

standards for sample preparation (Berthaud, Manzi, P"erez, & Mangenot,

2012; Jeffries et al., 2016). Software and algorithms for data analysis and

for SAXS-based structural modeling has greatly developed (Gr€awert &

Svergun, 2020). These properties and developments establish SAXS as an

indispensable tool for integrative structural biology (Brosey & Tainer,

2019; Rout & Sali, 2019).

The interpretation of the SAXS data is challenged by the low informa-

tion content of the experimental signals. Because the biomolecules are
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randomly oriented during solution scattering, SAXS curves I(q) represent

an orientational average and, consequently, are only a one-dimensional

smooth function of momentum transfer q ¼ 4π sin ðθÞ=λ. Here, λ is

the X-ray wavelength and 2θ is the scattering angle. The number of data

points in I(q) that provide independent structural information is estimated

by the number of Shannon–Nyquist channels (Moore, 1980; Rambo &

Tainer, 2013)

NShan ¼ðqmax $ qmin ÞD=π, (1)

where qmax and qmin denote the maximum and minimum momentum

transfer in I(q), respectively, and D is the maximum diameter of the solute.

NShan is in the range of 5–30 for many SAXS experiments. For comparison,

even a small protein with 100 residues contains approximately 200 flexible

backbone angles, demonstrating that SAXS data is by far insufficient for

defining all degrees of freedom of a biomolecule. Consequently, structure

refinement against SAXS data is highly ambiguous, that is, many different

structures fit the data equally well. Challenges due to the low information

content are enhanced by the presence of heterogeneous ensembles and by

uncertainties in the experimental and predicted SAXS curves. The low

information content of the data together with larger number of degrees

of freedom leads to a significant risk of overinterpretation upon fitting struc-

tural models against experimental data (Hub, 2018; Putnam, Hammel,

Hura, & Tainer, 2007).

To mitigate the risk of overinterpretation during structure refinement,

two main strategies have been devised. First, nearly all degrees of freedom

of the biomolecule have been constrained, leading to methods such as

rigid-body or normal mode refinement (Gorba, Miyashita, & Tama,

2008; Pelikan, Hura, & Hammel, 2009; Petoukhov & Svergun, 2005).

Such methods use only simple energy terms to discriminate plausible from

prohibited conformations, such as volume exclusion terms between protein

domains or a multidimensional harmonic potential along normal modes.

Second, physicochemical information has been added to the SAXS data with

the help of atomistic molecular dynamics (MD) simulations (Bj€orling,
Niebling, Marcellini, van der Spoel, & Westenhoff, 2015; Chen & Hub,

2015; Kimanius, Pettersson, Schluckebier, Lindahl, & Andersson, 2015;

Paissoni, Jussupow, &Camilloni, 2020). DuringMD simulations, all degrees

of freedom are kept flexible, but the force field restrains the biomolecule to

realistic conformations with acceptable free energy. Simulations with a
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coupling to experimental SAXS curves have been coined SAXS-driven or

SAXS-guided MD simulations.

Several previous studies described SAXS-driven simulations, in which

the MD simulations were coupled to experimental SAXS data with an

energetic restraint. Bj€orling et al. (2015) presented a method with a focus

on the interpretation of SAXS curve differences between two conformational

states. This study neglected effects from the hydration layer on the SAXS

curve, rationalized by the fact that hydration layer effects may approximately

cancel upon taking SAXS curve differences. Our group developed

SAXS-driven MD focused on absolute SAXS curves and implemented

the method into an extension of the GROMACS software, coined

GROMACS-SWAXS (https://gitlab.com/cbjh/gromacs-swaxs). The

implementation uses explicit-solvent SAXS curve calculations using atom-

istic representations for the hydration layer and excluded solvent (Chen &

Hub, 2014, 2015). Kimanius et al. (2015) suggested refining protein struc-

tures against SAXS data using metadynamics. However, since the SAXS

curve calculations neglected the buffer subtraction, the implementation

was not yet ready for refinement against experimental data. Paissoni et al.

(2020) provided a method for SAXS-driven simulations implemented in

PLUMED, which was primarily motivated with the aim of accelerating

SAXS-driven simulations. This method maps the atomistic model to a

coarse-grained representation for computing a SAXS curve. The method

neglects effects from the hydration layer, and the coarse-grained approxima-

tion is limited to smaller scattering angles (Bernetti & Bussi, 2021).

However, as discussed in this chapter and previously, the SAXS-driven

MD simulations implemented in GROMACS-SWAXS are subject to

only a small computational overhead between 5% and 20%, suggesting that

SAXS-drivenMD simulations based on all-atom SAXS predictions are like-

wise computationally feasible. Hsu, Leshchev, Kosheleva, Kohlstedt,

and Chen (2020) presented SAXS-driven MD simulations utilizing the

Debye equation, similar to Bj€orling et al. (2015); however, these authors

included effects from the hydration layer by increasing atomic form

factors of solvent-exposed atoms, similar to the FoXS method

(Schneidman-Duhovny, Hammel, & Sali, 2010).

This chapter describes the refinement of protein and soft-matter com-

plexes by coupling all-atom MD simulations to experimental SAXS data,

as implemented in GROMACS-SWAXS. We first describe SAXS-driven

MD simulations coupled with a harmonic restraint to the data (Chen &

Hub, 2015). The method was extended for simultaneous refinement against

SAXS and several small-angle neutron scattering (SANS) data sets collected
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at different D2O concentrations (Chen et al., 2019). We discuss how

SAXS-guided structure refinement is embedded into rigorous probability

theory, as the obtained MD ensemble may be interpreted as the posterior

distribution of a Bayesian inference problem (Shevchuk & Hub, 2017).

Such viewpoint enables statements of confidence intervals, which are still

underdeveloped in SAXS-guided modeling. Finally, we describe the refine-

ment of heterogeneous ensembles against SAXS data using aminimal bias, that

is, with commitment to Jaynes’ principle of maximum entropy (Hermann &

Hub, 2019; Ivanovi"c, Hermann, Wójcik, P"erez, & Hub, 2020).

The methods described here are freely available via an extension of the

GROMACS simulation software (Abraham et al., 2015) developed at

https://gitlab.com/cbjh/gromacs-swaxs. We present the theoretical basis of

SAXS-driven MD simulations. We discuss conceptual considerations as well

as practical guidelines for running and interpreting the calculations. Additional

tutorials and documentation are available at https://cbjh.gitlab.io/gromacs-

swaxs-docs. Although we here refer mostly to SAXS, the methods described

here are likewise applicable for refinement against small-angle neutron scat-

tering (SANS) data or for refinement against combined SAXS/SANS data.

SAXS-driven MD simulations require a forward model for predicting

SAXS curves from given MD simulations. The methods implemented in

GROMACS-SWAXS utilize explicit-solvent calculations, thereby taking

explicit representations of the hydration layer and excluded solvent into

account (Chen & Hub, 2014; Merzel & Smith, 2002; Park, Bardhan,

Roux, &Makowski, 2009). For more details on explicit-solvent SAXS pre-

dictions, we refer to chapter “Predicting solution scattering patterns with

explicit-solvent molecular simulations” by Chatzimagas and Hub in

Part A of this monograph.

2. SAXS-driven molecular dynamics simulations
2.1 Experiment-supported energetic bias

Similar to refinement against other experimental data ( Jack & Levitt, 1978),

SAXS-guided refinement is implemented by augmenting theMD force field

energy VFF(R) with an experiment-derived energy Eexp(R, D) that drives

the simulation into conformations R that are compatible with the data D:

Ehybrid ¼ V FFðRÞ + E exp ðR,DÞ (2)

Here, the data is given by the experimental SAXS intensities Iexp(qi) and

errors σ(qi), where i ¼ 1,…,Nexp and Nexp is the number of experimental
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data points. The MD simulation is coupled to the data using a harmonic

restraint on the SAXS intensities following

EexpðRðtÞ,DÞ¼ 1

2
fc kBT

XNexp

i¼1

½Icðqi;RðtÞÞ$ð f IexpðqiÞ+ cÞ&2

½ f σðqiÞ&2
: (3)

Here, Ic is the SAXS curve calculated on-the-fly from the MD simulation

and fc is an overall force constant, whereas kB and T denote the Boltzmann

constant and the temperature. The factor 1/2 is introduced to enable a

Bayesian interpretation of the refined ensemble in the special case fc ¼ 1

as described below. The symbols f and c denote fitting parameter that adjust

the overall scale and an offset of the experimental curve relative to the cal-

culated curve; f and c are adjusted throughout the simulation by minimizing

Eexp. Hence, only those differences between Ic and Iexp that cannot be

explained by f and c contribute to Eexp and, thereby, drive the simulation.

The offset c absorbs uncertainties due to the buffer subtraction and may

be omitted when coupling to high-precision SAXS data.

As an example, Fig. 1 presents structure refinement of the nuclear exportin

CRM1, which transports protein cargos across the nuclear pore (Chen&Hub,

2015). Free simulations of CRM1 are highly force field dependent, evident

from the fact that simulations with the Amber99sb or with the Charmm22*
force fields lead to overly open or overly closed conformations, respectively

(Fig. 1A, B, D top). Simulations with each force field exhibit poor agreement

with experimental SAXS data (Fig. 1C, black and solid yellowor green curves).

Upon restraining the simulations to SAXS data, excellent agreement with the

data is obtained (Fig. 1C, dashed yellow or green curves), and both two force

fields lead to a consensus partly open conformation (Fig. 1D bottom). Hence,

the SAXS data overrules imperfections in the two force fields. Fig. 1C shows

large residuals at low q between the experimental and the computed SAXS cur-

ves. These large residuals are a consequence of very small experimental errors,

while the overall error is likely dominated by systematic errors. If systematic

errors would be ignored, such large residuals would lead to excessively large

SAXS-derived forces, hence asking for methods for modeling systematic errors

as described below (see Sections 2.3 and 3.2).

2.2 Increasing the computational efficiency by smoothing
and re-binning the experimental curve

Owing to the large number of pixels on modern X-ray detectors, Iexp(qi) is

heavily oversampled. Iexp(qi) contains typically 800–2500 noisy estimates of
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the true underlying smooth SAXS curve, which contains only few indepen-

dent data points (Nexp≫NShan). Consequently, the formulation in Eq. (3) is

inefficient, since it requires the calculation of Ic(qi; R) for a large number

Nexp of q-points.

The computational cost is reduced by smoothing the raw experimental

data, thereby merging neighboring Iexp(qi) q-points within the same

Fig. 1 Structure refinement of the nuclear exportin CRM1 against SAXS data. Free MD
simulations with the Amber99sb (yellow) or Charmm22* (green) force fields lead to dif-
ferent conformations (A/B; D, top), which both disagree with experimental SAXS data
( χ2 ¼ 1397 and χ2 ¼ 429 for Amber99sb and Charmm22*, respectively) (C, see legend).
During SAXS-driven simulations, the different force fields lead to similar conformations
(D, bottom), in excellent agreement with the data ( χ2¼ 263 and χ2¼ 57 for Amber99sb
and Charmm22*, respectively). Adapted and reused with permission from Chen, P.-c., &
Hub, J. S. (2015). Interpretation of solution X-ray scattering by explicit-solvent molecular
dynamics. Biophysical Journal, 108, 2573–2584.
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Shannon bin into a smoothed curve #Iexp ðqÞ (Fig. 2). A shell script for

smoothing the curve based on the ATSAS module DATGNOM (Manalastas-

Cantos et al., 2021) is available at https://cbjh.gitlab.io/gromacs-swaxs-

docs. Upon smoothing the curve, Nexp raw experimental data points are

merged into a smooth curve with onlyNShan independent features, suggest-

ing that the uncertainties of the smoothed curve follow #σ2ðqÞ ' σ2ðqÞ=ns,
where ns ¼ Nexp/NShan is the number of experimental points per Shannon

bin. Let ΔI(qi) :¼ Ic(qi; R) $ ( f Iexp(qi) + c) denote the residuals between

experimental and calculated curve and

χ2 ¼
XNexp

i¼1

ΔIðqiÞ
f σðqiÞ

! "2

, (4)

such that Eexp ¼ fckBTχ
2/2. Let us further decompose the residuals

ΔI iðqiÞ ¼ Δ#I i + δI i into contributions (i) relative to the smoothed curve

Δ#I i , which can be fitted by adjusting the biomolecular structure R, and
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Fig. 2 Smoothing and rebinning the experimental curve to increase the computational
efficiency of SAXS-driven MD simulations. Black dots: Oversampled experimental SAXS
data for bovine serum albumin dimers taken from Jeffries et al. (2016). Curve smoothed
with DATGNOM (pink) and resampled with DATREGRID, here using 1.5 q-points per
Shannon bin (Manalastas-Cantos et al., 2021).
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(ii) owing to statistical noise in the data δIi, which cannot be fitted. Then,

χ2 can be rewritten as

χ2 ¼
XNexp

i¼1

Δ#IðqiÞ
f σðqiÞ

! "2

+
XNexp

i¼1

δIðqiÞ
f σðqiÞ

! "2

+ 2
XNexp

i¼1

Δ#IðqiÞ δIðqiÞ
½ f σðqiÞ&

2 (5)

The third term in Eq. (5) vanishes approximately because the noise δI(qi) is
symmetrically distributed around zero. The second term adds a constant

offset of ' 1 per experimental data point, i.e., a total offset of Nexp to

χ2 that cannot be fitted. The first term quantifies the deviation with respect

to the smoothed curve and contains all the relevant structural information.

Using thatΔ#IðqiÞ and σ(qi) are approximately constant within each Shannon

bin, the first term of Eq. (5) simplifies to a sum over the Shannon bins,

χ2 '
XNShan

b¼1

Δ#IðqbÞ
2

f 2#σðqbÞ
2 + Nexp , (6)

where we used #σ2ðqÞ ' σ2ðqÞ=ns . Hence, up to a structurally irrelevant

constant offset Nexp owing to experimental noise, χ2 and Eexp can be

evaluated using only the NShan intensities and errors of the smoothed curve.

In case that more than NShan q-points are used to evaluate Eexp, a correcting

prefactor is needed and we arrive at

E0
exp ' 1

2
fc kBT

N Shan

Nused

XNused

i¼1

½I cðqi;RÞ $ ð f #I exp ðqiÞ + cÞ&2

½ f #σðqiÞ&
2 , (7)

where Nused may be chosen in the range of 1–2 NShan. Evidently, using the

formulation in Eq. (7) greatly improves the computational efficiency of

SAXS-driven MD simulations as it requires (30 to 300 times fewer

SAXS intensity calculations as compared to the formulation in Eq. (3).

2.3 Accounting for systematic and calculated errors
SAXS data collected with single-photon counting detectors may be subject to

tiny statistical errors σexp(q) at small scattering angles. Consequently, the overall

uncertainty of the data may be dominated by unknown systematic errors, for

instance owing to imprecise buffer subtraction or minor undetected radiation

damage. When applying only the tiny statistical errors, the SAXS-derived

energies take spuriously large values at small angles due to the 1=#σðqiÞ
2 term,

which would further propagate into large SAXS-derived forces.
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Such problems are avoided by modeling of systematic errors. We

previously modeled systematic errors via an uncertainty δρbuf of 0.1% to

1% of the buffer density (Chen & Hub, 2015). The uncertainty δρbuf
propagates into an uncertainty σbuf (q) of the SAXS curve, which is large

at low angles and small at wide angles. Consequently, σbuf (q) dominates

the overall uncertainty at low angles and avoids spuriously large SAXS-

derived forces, whereas #σðqÞ dominates at wide angles. Apart from the

systematic errors, GROMACS-SWAXS takes statistical errors of the calcu-

lated curve σc(qi) into account (Fig. 3). This is implemented by replacing

the errors #σ in Eq. (7) with σ2tot ¼ f 2#σ2 + σ2buf + σ2c , leading to the final

SAXS-derived energy applied by GROMACS-SWAXS:

Ef
exp ' 1

2
fc kBT

N Shan

Nused

XNused

i¼1

½I cðqi;RÞ $ ð f #Iexp ðqiÞ+cÞ&
2

f 2#σ2ðqiÞ+σ2buf ðqiÞ+σ2cðqiÞ
, (8)

2.4 On-the-fly averaging of the calculated SAXS curve
Explicit-solvent SAXS curve predictions require averaging over multiple

MD frames for computing a SAXS curve. The number of frames required

for obtaining a converged SAXS curve depends on the contrast between the

biomolecule and the pure buffer; the smaller the electron density contrast,
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Fig. 3 Typical errors applied during SAXS-driven MD. At small angles, systematic errors
σbuf (blue) dominate the total uncertainty σtot (green circles), here modeled by a buffer
density uncertainty of 1%. At wide angles, experimental errors dominate (orange).
Calculated statistical errors are typically insignificant (black).
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the more frames are required to converge the SAXS curve. During

SAXS-driven MD simulations discussed here, the SAXS curve is therefore

computed as a running temporal average with a memory kernel that decays

exponentially into the past. The on-the-fly average of a quantity X at sim-

ulation time t is then given by

hXiðtÞ ¼ N $1

Z t

0

Xðt0Þ e$ðt$t0Þ=τdt0, (9)

where τ is the memory time, typically chosen between 50 and 200 ps, andN
is a normalization constant. Likewise, on-the-fly averaging of the scattering

amplitudes of the biomolecular and the pure-solvent system using Eq. (9)

provide an on-the-fly averaged SAXS curve (Chen & Hub, 2015).

Implementing the coupling to the experimental SAXS curve with an

on-the-fly averaged calculated curve has two key advantages: first, thermal

fluctuations on the time scale 1–2 τ such as solvent, side chain, or loop

fluctuations are taken into account before comparing the calculated with

the experimental curve in Eq. (8). Such thermal fluctuations may signifi-

cantly influence the SAXS curve of proteins at moderate scattering angles

(q > 0.25 Å$1) (Chen & Hub, 2014; Moore, 2014; Tiede, Zhang, &

Seifert, 2002). Second, there is no need to compute SAXS intensities every

MD step, but instead one SAXS update every (0.5 ps is sufficient. The

update interval together with the memory time must be chosen such that

the SAXS curves converge within τ. The longer update interval renders

SAXS-driven MD simulation computationally efficient with an overhead

of only 5–20% relative to unbiased simulations. However, owing to the

on-the-fly average, the dynamics are not conservative because the energy

Eexp
f depends not only on the current but also on previous conformations.

Hence, a reasonably tight temperature coupling scheme is required to avoid

energy drifts.

2.5 SAXS-derived forces applied during MD
SAXS-derived forces applied in theMD simulations are given by the negative

gradients of the SAXS-derived energy,

Fk ¼ $rkE
f
exp ðR,DÞ (10)

¼ $fc kBT
N Shan

Nused

XNused

i¼1

I cðqi;RðtÞÞ $ ð f #Iexp ðqiÞ + cÞ
σtotðqiÞ

2 ∇kI cðqi;RðtÞÞ, (11)
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whererkIc(qi; R(t)) denotes the on-the-fly averaged gradients of the SAXS

intensities with respect to the coordinates of atom k. For large biomolecular

systems, storing these gradients may require several Gigabytes of memory

(Chen & Hub, 2015).

GROMACS-SWAXS computes the forces Fk and the gradients

rkIc(qi;R(t)) only for the solute atoms but not for the solvent atoms.

Therefore, in addition to the derivatives of the Ic with respect to the solute

coordinates, a correction factor

f contrast ¼
ρsolu $ ρsolv

ρsolu
(12)

is applied, where ρsolu and ρsolv denote the average solute and solvent den-

sities, respectively. Here, density refers to the scattering length density, that

is, to the electron density in SAXS or to the neutron scattering length density

in SANS. As a numerical example, the factor fcontrast accounts for the fact

that, upon moving a protein domain with density ρsolu ¼ 440 e nm$3 inside

solvent with density ρsolv ¼ 334 e nm$3, only the contrast of 106 e nm$3 is

moved. Consequently, change of Ic(qi) upon a domain movement in mobile

water is reduced by the factor fcontrast¼ 0.24 as compared to a domain move-

ment at fixed water positions.

When coupling to SANS data measured at a large D2O concentration,

the contrast and the factor fcontrast may even become negative because a D2O

buffer exhibits a larger neutron scattering length density than proteins.

Consequently, upon moving a protein domain to the left, the contrast

may move to the right; such effect is correctly taken into account by a neg-

ative factor fcontrast.

2.6 Protocol A
To carry out SWAXS-driven MD simulations with the

GROMACS-SWAXS implementation published at https://gitlab.com/

cbjh/gromacs-swaxs, the following protocol is recommended:

1. Download and compile GROMACS-SWAXS, following the

installation instructions of official GROMACS. Alternatively,

GROMACS-SWAXS can be easily installed using Spack, which is avail-

able at many high-performance computing centers.

2. Setup the MD simulation system following freely available GROMACS

tutorials. Make sure to use an approximately 1 nm larger simulation

box compared to common simulations via the GROMACS module

gmx editconf -d.
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3. First compute a SAXS curve from an equilibrium simulation using the

rerun functionality of the GROMACS-SWAXS gmx mdrun module,

following tutorials at https://cbjh.gitlab.io/gromacs-swaxs-docs and as

described in chapter “Predicting solution scattering patterns with

explicit-solvent molecular simulations” by Chatzimagas and Hub in

Part A of this monograph. Computing a SAXS curve involves the setup

of a pure-solvent simulation systems, definition of the atomic form

factors with the gmx genscattmodule, and building of the envelope with

gmx genenv, which defines the solvent region contributing to the SAXS

curve. From visual inspection of the SAXS curve, is it plausible that a

conformational transition of the biomolecule explains the deviation

between the calculated and the experimental curve?

4. Generate the run-input (tpr) file with the gmx grompp module. For a

typical SAXS-driven MD simulation, the MD parameter (mdp) file

may look as follows:

; read scattering info from topology

define = -DSCATTER

; turn on SAXS calc. and, optionally, multiple SANS calc.

scatt-coupl = xray [neutron neutron ...]

; solute group

waxs-solute = Protein ; or Protein-Masses

; solvent group

waxs-solvent = Water_and_ions

; rotational fit group as defined with gmx genenv

waxs-rotfit = C-alpha

; memory time for on-the-fly average

waxs-tau = 200

; turn on SAXS energy E_exp slowly, e.g. over 5ns

waxs-t-target = 5000

; define coupling potential type. Alternative: log

waxs-potential = linear

; use experiental, calculated and systematic errors

waxs-weights = exp+calc+solvdens

; force constant, use 1-5. fc=1 enables Bayesian interpretation

waxs-fc = 1

; fit scale f and offset c of experimental curve

waxs-Iexp-fit = scale-and-offset

; update on-the-fly averaged SAXS curve every 0.5ps with

dt=0.002

waxs-nstcalc = 250

35Structure and ensemble refinement against SAXS data



; nr of q-values, N_used. Use approx. 1.5 N_Shan

waxs-nq = 15

; qmin and qmax in nm^(-1)

waxs-startq = 0

waxs-endq = 5

; nr of q-vectors for orientational average, use (0.2*(D*qmax)^2

waxs-nsphere = 500

; density of solvent (e/nm3), used for a precise buffer subtraction

waxs-solvdens = 334

; relative uncertainty of the solvent density, used to

; estimate systematic errors. Use 0.1% to 0.5%

waxs-solvdens-uncert = 0.005

; D2O concentration (e.g. 0% and 100%) for each SANS calc.

waxs-deuter-conc = [0 1]

5. Smooth the experimental target curve. Upon smoothing the curve,

the errors are reduced by a factor of n1=2s , where ns is the number of

experimental data points per Shannon bin. A Shell script for this purpose

is available at https://cbjh.gitlab.io/gromacs-swaxs-docs. The shell

script requires installation of the ATSAS software (Manalastas-Cantos

et al., 2021).

6. Finally, specify the envelope files with environment variables and run the

SAXS-driven MD:

export GMX_ENVELOPE_FILE=envelope.dat

export GMX_WAXS_FIT_REFFILE=envelope-ref.gro

sw=/path/to/pure-solvent.tpr

fw=/path/to/pure-solvent.xtc

gmx mdrun -s topol.tpr -fw $fw -sw $sw -is target.xvg ...

Here, pure-solvent.tpr and pure-solvent.xtc are the run-input and tra-

jectory files of the pure-solvent systems used for computing the buffer

subtraction. These have already been set up for computing the SAXS

curve from an equilibrium simulation in step 3.

7. To analyze the simulation, visualize it in a molecular viewer and validate

that the conformation is reasonable. Inspect in waxs_final.xvg whether

the simulation was capable of finding a conformation that is compatible

with the target SAXS curve. Inspect the SAXS-derived energy Eexp
f ,

which is stored in the energy (edr) file and available via the gmx energy

command. Validate that the energy is in the range of several kBT after the

structure has been refined. The contributions of individual q-points to

Eexp
f , available in waxs_pot.xvg, may reveal q-regions that could not

be explained.
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8. Since waxs_final.xvg represents the final on-the-fly average of

the calculated curve, it represents only the final 1–2 τ ((200 ps)

of the simulation. Use the rerun functionality of mdrun

(gmx mdrun -rerun traj.xtc) to compute the SAXS curve that is uni-

formly averaged over a longer part of the SAXS-driven simulation,

for instance over the final 10 ns. A uniform average is enabled with

the mdp option waxs-tau = 0. Use more q-points, such as waxs-nq = 100.

3. SAXS-driven MD as a tool for Bayesian inference
of molecular structures

3.1 Posterior, likelihood, and prior distributions
Following pioneering work by Rieping, Habeck, and coworkers on refine-

ment against NMR data (Habeck, Rieping, & Nilges, 2006; Rieping,

Habeck, & Nilges, 2005), SAXS-driven MD simulations have been

reformulated as tool for Bayesian inference of biomolecular structures from

experimental data. Accordingly, the goal of structure refinement is to find

the conditional probability P(R, θjD, K) that quantifies the plausibility for

the biomolecular structure R in the light of the experimental data D and

prior physical knowledge K. In the context of SAXS-guided modeling,

the data D is given by the experimental curve Iexp(q) and its errors, whereas

the prior knowledge K represents the MD force field, the starting con-

formation of the simulation, and other prior experience. The symbol θ
summarizes so-called nuisance parameters such as the unknown fitting

parameters or unknown systematic errors, which must be estimated simul-

taneously with the structure.

In Bayesian inference, P(R, θjD, K) should not be interpreted as proba-

bilities of random events, as common in the “frequentist interpretation” of

probability theory, but instead as a quantification of our state of knowledge

and ignorance. A wide distribution P(R, θjD,K) implies that many different

conformations R are compatible with D and K, implying a high degree of

ignorance and large confidence intervals on R. By the same token, a narrow

P(R, θjD, K) implies that only few structures are plausible in the light of

D and K, implying precise knowledge of R and small confidence intervals

on R. Hence, computing P(R, θjD, K) provides rigorous confidence inter-

vals for the refined structure founded in probability theory.

The conditional probability is evaluated using Bayes’ theorem,

PðR, θjD, KÞ / LðDjR, θ, KÞ πðRjKÞ πðθjKÞ, (13)
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where π(RjK) and π(θjK) denote the prior distributions of conformations

and of the nuisance parameters, respectively. L(DjR, θ, K) is the likelihood
that the data D was measured given that the structure R was present in the

experiment and given a specific set of nuisance parameters θ. The distribu-
tion P(R, θjD, K) is called posterior distribution. When running MD simula-

tions, the prior π(RjK) is naturally given by the Boltzmann distribution

πðRjKÞ∝ e$V FFðRÞ=kBT (14)

with theMD force fieldVFF(R), i.e., by the ensemble obtained before incor-

porating the data D. A reasonable choice for π(θjK) is less obvious; if no
prior information on the nuisance parameters is available, a noninformative

prior such as a flat or a Jeffreys prior may be used. It is advisable to test mul-

tiple priors in order to exclude that the conclusions depend on the choice of

the priors. For instance, testing multiple choices of π(RjK) corresponds to
running simulations with difference force fields VFF.

Assuming Gaussian independent errors σtot, the likelihood function is

LðDjR,θ,KÞ ∝
QN exp

i¼1

exp $
½I cðqi;RÞ $ I 0exp ðqi; θÞ&

2

2½ f σðqi; θÞ&
2

 !

¼ exp $ 1
2

XN exp

i¼1

½I cðqi;R, θÞ $ I 0exp ðqi; θÞ&
2

½ f σðqi; θÞ&
2

 !

,

(15)

Here, the I 0exp ðqi; θÞ ¼ f I exp ðqiÞ+c is the experimental data adjusted by the

scale f and the offset c, which appear as nuisance parameters (cf. Eq. 3). In

GROMACS-SWAXS, the likelihood function is modified twofold relative

to Eq. (15). First, as described above, the raw experimental intensities

(Iexp, σ) and errors are replaced with the smoothed curve (#I exp , #σÞ, thereby
replacing the sum over Nexp values with a sum over NShan values. Second,

the errors are augmented with the calculated and systematic errors, leading

to the final likelihood function:

Lf ðDjR,θ,KÞ / exp $ 1
2
N Shan

Nused

XNused

j¼1

ðI cðqj;RÞ $ #I 0exp ðqj; θÞÞ
2

f 2#σ2ðqiÞ+σ2buf ðqi; θÞ+σ2cðqiÞ

 !

(16)

Hence, Lf contains three nuisance parameters θ ¼ { f, c, δρbuf}.
The posterior distribution P(R, θjD,K) cannot be computed analytically

but is instead obtained by importance sampling. Here, Newtonian dynamics

as implemented byMD simulations are used for sampling the conformations.
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By taking the negative logarithm of the posterior, we turn the probability

functions into energy terms,

E ¼ $kBT lnPðR,θjD,KÞ
¼ V FFðRÞ + Ef

exp ðR, D, θÞjf c¼1 $ kBT ln πðθjKÞ, (17)

where we used Eqs. (8), (13), (14), and (16). Several aspects of this results are

notable:

• The original SAXS-derived energy Eq. (8) required the choice of a force

constant fc that weights the experimental data relative to the force field

VFF. Using Bayesian inference, in contrast, no force constant is needed

because the weight of the experimental data is fully determined by prob-

ability theory. In practice, it may be useful to first drive a conformational

transition with a larger fc and, in a follow-up simulation, sample the pos-

terior with fc ¼ 1.

• Sampling the posterior P(R, θjD, K) has been implemented using Gibbs

sampling. Accordingly, nuisance parameters θ are sampled with

Metropolis Monte-Carlo at fixed conformations R, followed by

Newtonian dynamics of R at fixed θ, and so on.

• Sampling the fitting parameters f and c is not required because they can be

marginalized out analytically at the level of the likelihood when assum-

ing flat priors for f and c, i.e., π( f jK) ¼ π(cjK) ¼ const. Then, the

likelihood in Eq. (16) is replaced with eLðDjR,δρbuf ,KÞ ¼R
LðDjR,θ,KÞ df dc, thereby taking “all possible” values of f and c into

account. Evaluating this integral shows that eL takes the same form as L,

except that f and c are replaced with their maximum-likelihood estimates

fml and cml (Shevchuk & Hub, 2017).

3.2 Bayesian treatment of systematic errors at small angles
GROMACS-SWAXSmodels systematic errors at small angles via an uncer-

tainty of the buffer density δρbuf (see above and Fig. 3). In Bayesian

SAXS-driven MD, δρbuf can be treated as one of the nuisance parameters

θ (Shevchuk & Hub, 2017). Accordingly, the relative uncertainty δρbuf is
sampled simultaneously with the structure R to obtain a joint posterior dis-

tribution over structures and buffer density uncertainties P(R, δρbuf jD, K).

GROMACS-SWAXS applies a Gaussian prior distribution for δρbuf.
Let rbuf :¼ δρbuf/ρbuf, then the prior is

πðrbuf jKÞ∝ exp ð$r2buf=2E
2
buf Þ (18)
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where ρbuf is the solvent density and Ebuf is given with the mdp parameter

waxs-solvdens-uncert, typically set between 0.1% and 1%. This algorithm

detects automatically whether the experimental data is biased by systematic

errors at small angles. Namely, if the MD force field permits a conforma-

tional transition that explains the experimental data Iexp(q), the posterior

of δρbuf would peak at small values, indicating that systematic errors are

not required to explain the experimental data (Fig. 4, blue solid). In contrast,

if theMD simulations does not find a conformation that explains Iexp at small

angles, the posterior of δρbuf would peak at larger values, indicating that sig-
nificant systematic errors are plausible in the light of the data and the force

field (Fig. 4, orange dashed).

Clearly, treatment of systematic errors in SAXS-based modeling is still

underdeveloped. To harvest increasingly finer details in SAXS data, it will
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Fig. 4 Example of posterior distributions over the uncertainty of the buffer density δρbuf
taken from SAXS-driven MD simulations of leucine binding protein (LBP, solid curve) or
HSP90 bound to ATP (dashed curve). For LBP, the posterior peaks at δρbuf ¼ 0; hence,
systematic errors are not required to explain the data, but they cannot be excluded
either. This finding is expected since the SAXS-driven MD simulation were carried
out against a calculated target curve without any uncertainties. In contrast, the posterior
for HSP90 peaks at larger δρbuf¼ 4 e nm$3, suggesting that significant systematic errors
are strictly required to explain the data. This finding reflects that the SAXS-driven MD
was carried out against experimental data with substantial systematic errors at small
angles. Data taken from Shevchuk, R., & Hub, J. S. (2017). Bayesian refinement of protein
structures and ensembles against SAXS data using molecular dynamics. PLOS
Computational Biology, 13, e1005800.
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be useful to explicitly model other sources of errors, such as a small fraction

of aggregated samples. We believe that Bayesian inference will provide a

rigorous framework to learn systematic errors simultaneously with the bio-

molecular structures.

3.3 Protocol B
The Bayesian interpretation of SAXS-drivenMD simulations are enabled by

using a force constant of unity, and optionally, by sampling δρbuf. The mdp

file for a Bayesian SAXS-driven MD simulation should contain, apart from

the options described above:

waxs-fc= 1

waxs-solvdens-uncert= 0.005

waxs-solvdens-uncert-bayesian= yes

The simulation frames in the trajectory of the SAXS-driven MD may be

interpreted as samples from a high-dimensional posterior distribution over

conformations P(RjD, K). Obtaining posteriors over intuitive properties,

such as the center-of-mass distance dcom between two domains, is straight-

forward: dcom values may be extracted from the trajectory frames and plotted

as a histogram. The histograms are the posterior Pcom(dcomjD, K) over the

center-of-mass distances, suggesting that the peak position and the width of

Pcom provide the most plausible dcom and its uncertainty in the light of the

data and the force field. Mathematically, obtaining Pcom(dcomjD, K) from

P(RjD, K) would involve a marginalization, that is the integration over

all other degrees of freedom except dcom; however, since the trajectory of

the Bayesian SAXS-driven MD contains samples of dcom, there is no need

carry out a marginalization in practice.

Samples from the posterior over the relative uncertainty of the buffer

density, δρbuf/ρbuf, are written into separate output file

waxs_solvDensUncert.xvg allowing the calculation of a histogram and,

hence, the posterior over the uncertainty of the buffer density.

4. Maximum-entropy ensemble refinement against
SAXS data

4.1 Theoretical background
Since SAXS is a solution method, experimental SAXS intensities represent

the average over a structural ensemble. For structurally stable proteins, the

ensemble may be approximated by a single, most prominent conformation,
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enabling the use of structure refinement methods described above.

In contrast, for solutes that adopt a heterogeneous ensemble, the ensemble

is adequately represented by a large number of conformations or by confor-

mational distributions. Typical examples are intrinsically disordered proteins

(IDPs) and proteins with disordered regions, domains connected with flex-

ible linkers, or dynamic soft-matter complexes. Upon refining such hetero-

geneous ensembles against experimental SAXS data Iexp(q), the SAXS curves

computed from the individual conformations may differ from Iexp(q), and

only the ensemble-averaged computed curve should agree with the data.

However, ensemble refinement against SAXS data is an ill-posed prob-

lem because many different ensembles would agree with Iexp(q), even if the

conformational space is restrained with an all-atom force field. Two strate-

gies have been put forward for choosing a justified refined ensemble from all

the ensembles that satisfies the data (Ravera, Sgheri, Parigi, & Luchinat,

2016). Following the strategy of maximum parsimony, the aim is to explain

the data with as few conformations as possible. Such approach is most jus-

tified if the biomolecule adopts a few well-defined conformational states.

The second approach is founded in statistical physics and is based on

Jaynes’ maximum-entropy principle (Boomsma, Ferkinghoff-Borg, &

Lindorff-Larsen, 2014; Cesari, Reißer, & Bussi, 2018; Hermann & Hub,

2019; Jaynes, 1957). According to Jaynes, we should choose the ensemble

distribution with the greatest uncertainty (or with the least information) that

satisfies a given set of constraints. In the context of structure refinement, the

constraints are our requested agreement with the experimental data. The

principle is satisfied by finding an ensemble distribution that maximizes

the Shannon entropy

SðpÞ ¼ $
X

i

pðRiÞ ln pðRiÞ (19)

under the given constrains.

In ensemble refinement, however, we are typically interested in refining

a prior ensemble from a free MD simulation against experimental data,

suggesting that it is useful to maximize the relative entropy between the unbi-

ased and the refined ensemble (Caticha, 2004). Because the relative entropy

is the negative of the Kullback–Leibler divergence DKL(p1jp0) (Kullback &

Leibler, 1951), maximizing the relative entropy implies that we should find a

refined ensemble distribution p1(Ri) that minimizes
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DKLðp1jp0Þ ¼
X

i

p1ðRiÞ ln
p1ðRiÞ
p0ðRiÞ

(20)

under the given constrains, where p0(Ri) is the prior ensemble distribution.

Taking the prior from an unbiased MD ensemble, the aim is to find an

updated ensemble that is (i) in agreement with the data and (ii) updated

as minimally as possible with respect to the unbiased prior ensemble. In other

words, the ensemble is only updated as strictly needed to explain the data,

while any bias that is not supported by the data is avoided. Specifically, the

formulation assures that the ensemble is not updated if the prior ensemble is

already in agreement with the data.

The minimization problem can be solved with the help of Lagrangian

multipliers, where one multiplier is required for each experimental con-

straint (Pitera & Chodera, 2012). However, the Lagrangian multipliers must

be optimized in an iterative manner, which may be tedious in presence of a

larger number of experimental constraints (Boomsma et al., 2014). An alter-

native for implementing a minimal bias is the parallel-replica approach.

Here, several copies of the system (replicas) are simulated in parallel, and

only the calculated data averaged over the replicas is restrained to the data

with a harmonic restraint (Fig. 5). Roux and Weare (2013) and Cavalli,

Camilloni, and Vendruscolo (2013) showed that the replica-averaged har-

monic restraint imposes a minimal bias in the limit of a large number of

replicas.

4.2 Parallel-replica ensemble refinement against SAXS data
Parallel-replica refinement against SAXS data is illustrated for an IDP in Fig. 5.

First, the SAXS intensity is averaged over the replicas intensities Ic(qi, Rα),

Fig. 5 Illustration of parallel-replica ensemble refinement. N replicas are simulated
simultaneously, each providing a calculated curve I1,…,IN: Coupling the replica-
averaged SAXS curve to the experiment with a harmonic restraint leads to the maxi-
mum entropy ensemble.
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#I cðqi;R1,…,RN rep
Þ ¼ 1

N rep

XN rep

α¼1

I cðqi,RαÞ, (21)

where α is the replica index and Nrep is the number of replicas. Then, the

systems are coupled to the data with a harmonic restraint similar to Eq. (8),

except that the SAXS curve from a single simulation is substituted by the

replica-averaged curve:

Eexp R1,⋯;RNrep ;Iexp

# $
¼ 1

2
Nrep fckBT

NShan

Nused

XNused

j

#Ic qj;R1,⋯RN

% &
$ #I 0exp qj

% &h i2

f 2 σ2 qj
% &

(22)

Here, #I 0exp denotes the smoothed experimental curve adjusted by the fitting

parameters f and c, as used above. The biasing energy is multiplied withNrep,

such that the factor cancels with 1/Nrep in Eq. (21) when taking the deriv-

atives with respect to atomic coordinates, as done for computing the

SAXS-derived forces (Hummer & K€ofinger, 2015).

4.3 Choosing the number of replicas
The number of replicas that are required to follow the maximum entropy

principle depends on the system (Boomsma et al., 2014; Hermann &

Hub, 2019). A possible strategy for finding a good value forNrep is to inves-

tigate distributions h(ξ) of a few important degrees of freedom ξ, such as dis-
tribution of the radius of gyration of an IDP or of the moments of inertia of a

soft-matter complex. Accordingly, the Kullback–Leibler divergence

DKL(h1jh0) between the biased distribution h1(ξ) and unbiased distribution

h0(ξ) may be plotted vs the number of replicas. A sufficient value of Nrep

would be indicated by a plateau region of such plot.

A disadvantage of DKL is its numerical instability; namely, since p0
appears in the denominator of Eq. (20), DKL is unstable if some confor-

mations of the biased ensemble p1 were hardly sampled in the unbiased

distribution p0. A numerically more stable alternative is given by the

Jensen–Shannon divergence, which may be considered as a smoothed and

symmetrized version of DKL,

DJSðh1jh0Þ ¼ ½DKLðh0jhMÞ + DKLðh1jhMÞ&=2, (23)
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where hM¼ (h0 + h1)/2 is the average of h0 and h1 (Hermann &Hub, 2019).

Another useful measure is given by the entropy of biased distributions h1,

S½h1& ¼
R
h1ðξÞ ln h1ðξÞdξ. If the number of replicas is too low, the ensemble

is still overly biased, which may lead to overly narrow ensemble and

overly narrow distributions h1(ξ). Hence, it is useful to plot the entropy

(or even simply the width) of h1(ξ) versus the number of replicas. For the

refinement of an IDP ensemble we found previously that using only 4–8
replicas were sufficient. This finding is likely explained by the fact that, when

using explicit-solvent SAXS predictions, Ic(qi, Rα) represent on-the-fly

averages with a memory time of 50–200 ps. Hence, even the SAXS curves

from individual replicas represent some conformation heterogeneity,

explaining why only few replicas are sufficient to represent the heteroge-

neous overall shape of the IDP ensemble that is encoded by the data.

4.4 Protocol C
Multireplica SAXS-driven MD simulations are set up similar to the

single-replica refinement described above.

1. Compile GROMACS-SWAXS with MPI support using

cmake -DGMX_MPI=ON ...

2. When using four replicas, for instance, use the following mdp options:

waxs-ensemble-type = maxent-ensemble

waxs-ensemble-nstates = 4

waxs-scale-i0 = no ; yes with small contrast, e.g. with IDP

gen-vel = yes

With the gen-vel = yes option, the replicas start with different initial

velocities, providing independent simulations. For solutes with a small

contrast, such as an IDP, the forward scattering intensity Ic(q ¼ 0) may

not converge within the memory time τ. To greatly accelerate the con-

vergence, Ic(q ¼ 0) may be fixed to the forward intensity of the target

curve by adding a small constant density to the solvent, turned on with

the mdp option waxs-scale-i0 = yes. Prepare one tpr file for each replica,

and place the tpr files into different subdirectories 000, 001, etc:

gmx grompp -f maxent.mdp -o 000/topol.tpr

gmx grompp -f maxent.mdp -o 001/topol.tpr etc.

3. Run the multireplica simulation with the -multidir functionality of

mdrun:
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sw=/path/to/pure-solvent.tpr

fw=/path/to/pure-solvent.xtc

target=$(realpath Itarget_trans.xvg)

export GMX_ENVELOPE_FILE=$(realpath envelope.dat)

export GMX_WAXS_FIT_REFFILE=$(realpath envelope-ref.gro)

mpiexec -np 4 gmx_mpi mdrun \

-s topol.tpr -sw $sw -fw $fw -is $target -multidir 000 001

4. Carry out the same analysis as described above for regular SAXS-driven

MD. Now, the file waxs_final.xvg contains the final on-the-fly average

of the replica-averaged SAXS curve. Carry out a rerun with the trajec-

tories of the four replicas to compute a uniformly averaged SAXS curve

for each replica, and henceforth average the calculated curve. Inspect

whether the replica-averaged curve agrees with the experimental

target curve.

5. Compute distributions h1(ξ) of interesting observables ξ, combined from

all replica trajectories, such as the distribution of the radius of gyration or

the secondary structure content of an IDP. Such distributions quantify

the heterogeneity of the ensemble.

6. With a new simulation system, redo the simulation with increasing num-

bers of replicasNrep. Recompute distributions over observables using the

same aggregated simulation time (e.g., 1)400 ns, 2)200 ns, 4)100 ns,

etc.). Inspect convergence of the entropy (or the width) of the distribu-

tions h1(ξ) as function of Nrep.

4.5 Example: Ensemble refinement of a detergent micelle
Fig. 6 presents a multireplica-average ensemble refinement of a DDMdeter-

gent micelle using an increasing number of 1–10 replicas. The distributions
of moments of inertia as computed from the aggregated simulations strongly

depend on the number of replicas. Namely, the distributions from

single-copy refinement are overly narrow, indicative of an overly restrained

ensemble in violation of the maximum entropy principle (Fig. 6C, black).

Using a larger number of replicas, the distributions are wider, reflecting a

larger degree of heterogeneity. Critically, all simulations reveal quantitative

agreement with the data, even when using only a single replica (Fig. 6B).

This demonstrates that agreement with the data does by far not guarantee

that the ensemble is correct.
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Fig. 6 (A) Parallel-replica ensemble refinement of a DDM detergent micelle. (B)
Excellent agreement is found with the data, irrespective of the number of replicas
between 1 and 10 (χ2 ¼ 129, χ2 ¼ 80, χ2 ¼ 37, and χ2 ¼ 161 for 1, 2, 4, and 10 replicas,
respectively). (C) However, different numbers of replicas lead to different conformation
ensembles, here quantified by the distributions of the micelle core semiaxes a, b, and c,
demonstrating that agreement with the data does by far not guarantee that the ensem-
ble is correct. Reprinted with permission from Ivanovi"c, M. T., Hermann, M. R., Wójcik, M.,
P"erez, J., & Hub, J. S. (2020). Small-angle X-ray scattering curves of detergent micelles: Effects
of asymmetry, shape fluctuations, disorder, and atomic details. The Journal of Physical
Chemistry Letters, 11(3), 945–951. https://doi.org/10.1021/acs.jpclett.9b03154, Copyright
2020 American Chemical Society.
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5. Discussion: Conceptual considerations
and recommendations

5.1 SAXS-driven MD simulations (should) feel only a weak
bias by the SAXS data

Structural data is typically insufficient for defining all degrees of freedom of a

biomolecule. This is true not only for SAXS data, but also for data from

X-ray crystallography, NMR spectroscopy, or cryoelectron microscopy.

To avoid overfitting during structure refinement, structural data is comple-

mented with additional physicochemical information that restraints the bio-

molecule into realistic conformations. The required amount of additional

information critically depends on the information content of the data; the

lower information content of the data, the more predictive additional infor-

mation is needed. For instance, excluding atomic overlaps and restraining

chemical bond geometries is often sufficient for the refinement of atomic

models against crystallographic data but would be by far insufficient for

refinement against SAXS data.

During SAXS-driven MD, the structure is largely imposed by the

all-atom force field, which restraints not only chemical geometries but also

maintains a proper hydrogen bond network and favorable electrostatic inter-

actions. Overfitting is avoided by using only a small force constant fc for the

SAXS-derived restraints in the order of unity, such that biomolecular

dynamics are largely controlled by the force fieldVFF(R) whereas the energy

Eexp only mildly pushes the biomolecule into agreement with the data

(see Eqs. 8 and 17). Indeed, Eexp
f takes values of few up to tens of kilojoules

per mole, whereas the potential energy contributions from Lennard-Jones or

Coulomb interactions are typically in the range of hundred thousands to

millions of kilojoules per mole.

Inspection of the SAXS-derived potentials is also advised to prevent

overinterpretation of the structural ensemble. The potential should con-

verge over simulation time to values in the range of several kBT (thermal

energies). Caution is advised if individual q-points give rise to high poten-

tials, indicating that parts of the SAXS curve cannot be explained by the

simulation ensemble. Generally, it is highly desirable to cross-validate the

derived ensemble against independent structural or biochemical data that

has not been used during the refinement.
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5.2 Accelerating transitions with SAXS data and sampling
limitations

SAXS-driven MD simulations have been used to accelerate large-scale con-

formational transitions of biomolecules, which would require prohibitively

long simulation times during unbiased simulations. For instance, we showed

that SAXS data may be used to drive large-scale opening transition of the

large proteins Hsp90 or ATCase in MD simulations (Chen & Hub, 2015;

Shevchuk & Hub, 2017). However, SAXS-driven MD works as an

enhanced sampling technique only if the SAXS-derived forces point into

the direction of the sought-after conformation transition. This is typically

true in the case of large-scale domain motions, in particular if these motions

modulate the radius of gyration. In contrast, achieving a complex, nonlinear

rearrangements in the simulation such as the folding of an unstructured tail

into an α-helix is far more challenging. In such cases, the correct final state

might be detectable via a low χ2 in Eq. (5), but it is unlikely that

SAXS-derived forces would accelerate the folding transition. Hence, for

guiding complex transitions with SAXS data, SAXS-driven MD may be

combined with established enhanced sampling techniques such as simulated

tempering or Hamiltonian replica exchange.

5.3 Further analysis
The trajectories obtained from SAXS-driven MD are typically post-

processed to provide insight that is not directly accessible from the SAXS

data. This includes, for instance, analysis of (i) the heterogeneity of the

refined ensembles, (ii) interactions at the atomic level such as secondary

structure content or hydrogen bond patterns, (iii) transition pathways, or

(iv) structural parameters such as the persistence lengths or end-to-end dis-

tances of IDPs. In addition, refined ensembles may provide insight into ther-

modynamic driving forces by means of free energy calculations, which have

so far been underexposed in the context of SAXS-driven MD simulations.

6. Applications

Although SAXS-driven MD simulations have emerged recently, they

have provided insight into a range of (bio)molecular systems. To mention a

few, parallel-replica ensemble refinement of detergent micelles was used to

identify capabilities and limitations of simple geometric models in explaining
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SAXS data (Ivanovi"c et al., 2020). WAXS-driven MD solved the salt-

dependent solution structures of RNA triplex motifs (Chen, He,

Kirmizialtin, & Pollack, 2022), the dynamics of RNA upon ligand or ion

binding (He,Henning-Knechtel, &Kirmizialtin, 2022), or a large-scale open-

ing transition of a phytochrome (Bj€orling et al., 2015). In a related approach,

combined with metainference and metadynamics, simulations restrained to

SAXS data characterized a flexible polyubiquitin chain (Jussupow et al.,

2020). Disordered intermediate states of unfolding bovine α-lactalbumin

were obtained by restraining MD simulations to time-resolved SAXS data

(Hsu, Leshchev, Kosheleva, Kohlstedt, & Chen, 2021). Ongoing efforts in

our group involve heterogeneous ensembles of RNA–protein complexes

involved in translational control.We expect that more applications will emerge

as the implementations are now freely available and widely documented.

7. Summary

SAXS is an increasingly valuable tool of integrative structural biology

thanks to the accuracy of data collected at modern SEC-SAXS beamlines

and thanks to its structural information content, which is not accessible

by other techniques. However, the interpretation of the data is challenged

by the low information content of the experimental signals, leading to the

risk of overinterpreting the data. This risk is mitigated by using MD simu-

lations that add physicochemical information to the data.

In this chapter, we presented three approaches for refining structural

ensembles against SAXS data by integrating the experimental data

on-the-fly into all-atom MD simulations:

(i) During SAXS-driven MD, an MD simulation is coupled to experi-

mental SAXS data using harmonic restrains on the data, thereby refin-

ing an ensemble that may be approximated by a single, most prominent

conformation. The SAXS-driven simulations promote conforma-

tional transitions compatible with the data. They are capable of over-

coming force field imperfections and sampling limitations of unbiased

simulations, given that the transitions are geometrically simple.

(ii) When using SAXS-driven MD as a tool for Bayesian inference of bio-

molecular structures from a given SAXS curve, the MD simulation

samples the sought-after posterior distribution. The posterior quan-

tifies the plausibility of a biomolecular structure in the light of the

experimental data and prior physicochemical information, as encoded

in the MD force fields. This Bayesian framework may estimate
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systematic errors at small angles simultaneously with the structure,

which enables one to assess whether systematic errors are required

to explain the experimental data.

(iii) The parallel-replica approach allows one to refine heterogeneous

ensembles with commitment to the maximum-entropy principle.

Here, the SAXS curve averaged over several replicas is coupled to

the experimental data using harmonic restrains, such that the updated

ensemble is compatible with the data but biased as minimally as pos-

sible with respect to the unbiased ensemble.

All approaches require a forward model for calculating the SAXS intensities

from the atomistic structures. We discussed structure and ensemble refine-

ment based on explicit-solvent SAXS curve calculations, as used in the

WAXSiS method, thereby accurately representing the hydration layer and

the excluded solvent (Chen & Hub, 2014; Knight & Hub, 2015). An imple-

mentation of the methods described here employing the explicit-solvent

SAXS curve calculations is freely available in GROMACS-SWAXS

(https://gitlab.com/cbjh/gromacs-swaxs).
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