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Time-resolved wide-angle X-ray scattering (TR-WAXS) is an emerging experimental technique
used to track chemical reactions and conformational transitions of proteins in real time. Thanks to
increased time resolution of the method, anisotropic TR-WAXS patterns were recently reported,
which contain more structural information than isotropic patterns. So far, however, no method has
been available to compute anisotropic WAXS patterns of biomolecules, thus limiting the structural
interpretation. Here, we present a method to compute anisotropic TR-WAXS patterns from molecular
dynamics simulations. The calculations accurately account for scattering of the hydration layer and
for thermal fluctuations. For many photo-excitable proteins, given a low intensity of the excitation
laser, the anisotropic pattern is described by two independent components: (i) an isotropic component,
corresponding to common isotropic WAXS experiments and (ii) an anisotropic component depending
on the orientation of the excitation dipole of the solute. We present a set of relations for the calculation
of these two components from experimental scattering patterns. Notably, the isotropic component is
not obtained by a uniform azimuthal average on the detector. The calculations are illustrated and
validated by computing anisotropic WAXS patterns of a spheroidal protein model and of photoactive
yellow protein. Effects due to saturated excitation at high intensities of the excitation laser are
discussed, including opportunities to extract additional structural information by modulating the laser
intensity. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930013]

I. INTRODUCTION

Proteins are flexible nanomachines which frequently carry
out their biological function through conformational transi-
tions. An emerging approach to observe proteins in real time
is time-resolved wide-angle X-ray scattering (TR-WAXS).1

This method was successfully applied to observe the struc-
tural dynamics of chemical reactions of small molecules in
solution.2–8 More recently, TR-WAXS was applied to track
the conformational transitions of photo-active globular pro-
teins9–16 and proton pumps.17–20 The structural interpretation
of such TR-WAXS signals is challenging since, due to the
orientational average inherent to solution X-ray scattering,
WAXS patterns contain typically only 10-20 independent
data points,21 whereas proteins contain many more degrees of
freedom.

Several studies interpreted TR-WAXS by means of
singular value decomposition, thereby detecting the number of
conformational intermediates and the kinetics underlying the
conformational cycles.11,12,15 Using such models, scattering
curves for structural intermediates and low-resolution real-
space electron densities of intermediates could be derived.15

For a structural interpretation at the atomic level, TR-WAXS
patterns have been calculated from structures determined
by crystallography9,10,14,16 or nuclear magnetic resonance
(NMR).13 In addition, Monte Carlo14 and Molecular Dynamics
(MD) simulations4,5,10,16 have been used to refine structures

a)jhub@gwdg.de; URL: http://cmb.bio.uni-goettingen.de/

against WAXS data. For such refinement approaches, due
to the low information content of WAXS, a tight prior
distribution of possible conformational states is required to
avoid overfitting of the data.

With the aim to increase the amount of data ex-
tracted from TR-WAXS, anisotropic scattering experiments
of photoactive yellow protein (PYP) and myoglobin were
recently established.22,23 Anisotropic scattering experiments
make use of the fact that a linearly polarized excitation
laser primarily excites those proteins whose excitation dipole
moment is aligned with the laser polarization. Hence, only
photoselectively aligned proteins carry out the photon-induced
conformational transition, leading to an anisotropic scattering
pattern. In this way, anisotropic WAXS partly overcomes
the orientational average, and should therefore provide more
independent structural data as compared to isotropic WAXS.
The anisotropy of the difference scattering signal decays with
the time scale of the rotational diffusion of the protein, which
is 10-20 ns for small proteins such as PYP or myoglobin.
Methods that allow a structural interpretation of anisotropic
WAXS are still limited.1 Based on anisotropic TR-WAXS
data of PYP, Cho and coworkers concluded that PYP shrinks
along the axis parallel to the transition dipole and expands in
the plane orthogonal to the transition dipole, in qualitative
agreement with structures determined by Laue crystallog-
raphy.23,24 An atomic-level structural interpretation has so
far been complicated by the lack of methods that validate
structural models of biomolecules against anisotropic TR-
WAXS patterns. A number of studies focussed on predicting

0021-9606/2015/143(10)/104108/13/$30.00 143, 104108-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.76.70.252 On: Fri, 11 Sep 2015 14:38:54

http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
http://dx.doi.org/10.1063/1.4930013
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
mailto:jhub@gwdg.de
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://cmb.bio.uni-goettingen.de/
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4930013&domain=pdf&date_stamp=2015-09-11


104108-2 L. U. L. Brinkmann and J. S. Hub J. Chem. Phys. 143, 104108 (2015)

anisotropic patterns from X-ray scattering22,25–29 or electron
diffraction,30 with a focus on small molecules, such as NaI
or I2. These calculations showed that the patterns reduce to
two independent components at low excitation intensity. For
biomolecules, no method to calculate anisotropic TR-WAXS
patterns has been devised.

Isotropic TR-WAXS patterns of biomolecules have so
far been calculated from pairs of static structures using im-
plicit solvation models.9,10,13,14,16 However, such calculations
may face limitations in the wide-angle regime, where the
internal structure of water and protein fluctuations become
relevant.31–33 In addition, conformational transitions may be
subtle, suggesting that side chain and solvent fluctuations
must be carefully averaged out before comparing structural
models to experimental data. Another disadvantage of simple
implicit solvent models is that they require fitting of free
parameters associated with the solvation layer and the
excluded solvent, thereby reducing the amount of available
information. Explicit-solvent MD simulations overcome such
limitations. They yield a physically accurate description of
solvation, thus avoiding any fitting parameters associated with
the solvent, and they naturally account for protein and solvent
fluctuations.33–37

In this article, we present a method to compute anisotropic
TR-WAXS patterns from explicit-solvent MD simulations.
The calculations build upon the work by Park et al., who
introduced an algorithm to average over explicit solvent
configurations taken at frozen solute coordinates.34 More
recently, by using a spatial envelope around the solute and
the solvation shell, we extended that algorithm to allow
the simultaneous average over solute and solvent degrees
of freedom, rendering the protocol directly accessible to
unrestrained MD simulation.33 Noteworthy, those calculations
are accessible via the web server WAXSiS.38 Importantly, our
method is not based on the Debye equation that assumes
a uniform orientational average, but instead on a numerical
orientational average. As shown here, by replacing the uniform
with a weighted orientational average, the formalism allows
for the calculation of anisotropic patterns.

This article is organized as follows. First, we derive the
expression for the calculation of isotropic difference WAXS
patterns. This calculation closely resembles the derivation
by Park et al., yet the temporal average adopted by Park
et al. is here replaced by an ensemble average, allowing a

more natural generalisation to time-resolved data. Next, the
calculation of anisotropic patterns is formulated. We show that,
for specific excitation probabilities, the anisotropic patterns
can be represented by a sum of two independent components,
of which the anisotropic one is subject to an exponential decay
due to rotational diffusion. After illustrating the method using
a simple test system, we finally validate the calculations by
comparing computed isotropic and anisotropic WAXS patterns
of PYP to published experimental data. We close with an
analysis on the role of saturation effects at high intensities of
the excitation laser.

II. THEORY

A. Time-dependent WAXS

We consider a solution of N randomly oriented pho-
toactive proteins, which are excited by a laser pulse at time
t = 0 (Fig. 1). In a TR-WAXS experiment, the difference
in scattering intensity before and after laser excitation is
recorded. Hence, we aim to compute the quantity

∆I(q,∆t) = It=∆t(q) − It<0(q), (1)

where It<0(q) is the scattering intensity before laser excitation,
and It=∆t(q) is the intensity at a time delay ∆t after laser
excitation. q denotes the momentum transfer in the reference
frame of the experiment, and it is given through its absolute
value q and the azimuthal angle β on the detector, q = q(q, β).
q is related to the scattering angle 2θs by q = 4π sin(θs)/λ,
where λ is the wavelength of the X-ray beam.

In the following, A(r,∆t) and B(r) denote the electron
densities of the solution after and before the laser pulse,
respectively. The difference intensity is then given by

∆I(q,∆t) = |A(q,∆t)|2 − |B(q)|2, (2)

where A and B are the Fourier transforms of A and B,
respectively.

In order to evaluate Eq. (2), we decompose the system
into disjunct volumes,

A(r,∆t) = Ab(r) +

i∈I

Ai(r,∆t). (3)

Here,I = {1, . . . ,N} is a placeholder for the set of N proteins.
Ab(r) is the electron density of the bulk solvent, and Ai(r,∆t)

FIG. 1. Illustration of a TR-WAXS ex-
periment. (a) Proteins are randomly ori-
ented in solution. Proteins with the tran-
sition dipole moment (arrows) aligned
along the laser polarisation (green ar-
row) are predominantly excited (red).
(b) The same ensemble of proteins in
solution before excitation. (c) Taking
the difference between the solution (b)
before and (a) after excitation effec-
tively eliminates contributions from the
bulk solvent and from proteins which
were not excited (transparent).
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is the density of protein i including its solvation layer, to
which we refer in the following as protein droplets. The
volumes contributing to Ai are defined through a constant
spatial envelope that encloses the complete conformational
space of the protein, up to rotations and translations, as
well as its solvation layer (Fig. 3). The construction of the
envelope was described in previous work.33 Analogously,
the density before laser excitation is decomposed as B(r)
= Bb(r) +

i∈I Bi(r). These decompositions are possible if
proteins are not aggregated, such that the protein droplets do
not overlap.

Expanding the first term in Eq. (2) yields

|A(q,∆t)|2 = Ab(q)A∗b(q)
+


i∈I


j ∈I
j,i

Ai(q,∆t)A∗j(q,∆t)

+

i∈I

Ai(q,∆t)A∗i(q,∆t)

+ Ai(q,∆t)A∗b(q) + Ab(q)A∗i(q,∆t) . (4)

Here, the asterisk denotes complex conjugate. An analogous
expression can be written for |B(q)|2.

The first term in Eq. (4) refers to the pure solvent
scattering and also depends on the long range organisation
of proteins in the A and B systems. Not taking into account
solvent heating, these terms should be identical in both systems
and hence cancel out. The second term in Eq. (4) yields
contributions from protein-protein correlations. For dilute
solutions and if q is not close to zero, these contributions
can be neglected and, hence, the difference intensity of Eq. (2)
is given by

∆I(q,∆t) ∝ |Ai(q,∆t)|2
I
−

|Bi(q)|2

I

+ 2 Re
Ai(q,∆t)A∗b(q)


I
−

Bi(q)B∗b(q)

I


,

(5)

where Re[·] denotes the real part and ⟨·⟩I indicates the
average over all proteins. The first and second term in Eq. (5)
correspond to scattering intensities from correlations purely
inside the envelopes. The third term, a cross term, originates
from correlations between densities inside and outside of the
envelope.

In order to evaluate that cross term, we shift each protein
into the origin. Accordingly, a shifted electron density for each
protein droplet is introduced, As

i (r − ri,∆t) = Ai(r,∆t), where
ri is the center of mass of protein i, as well as a shifted bulk
density As

b, i
(r − ri) = Ab(r). Analogously, all proteins before

excitation are shifted into the origin, yielding shifted electron
densities of ground-state protein droplets Bs

i (r) and shifted
ground-state bulk density Bs

b, i
(r). The terms in Eq. (5) are

invariant under such translations, so we have Ai(q,∆t)A∗
b
(q)

= As
i (q,∆t)As∗

b, i
(q) and Bi(q)B∗b(q) = Bs

i (q)Bs∗
b, i
(q). However,

the terms in Eq. (5) do depend on the orientation of the protein.
In order to account for different orientations, we decompose
the set of proteins into groups I(u) with identical orientation,
denoted by their Euler angle u. Formally, this decomposition
can be written as I = 

uI(u), and the average over all
proteins is replaced by ⟨·⟩I = N−1

u


u ⟨·⟩I(u), where Nu is the

number of orientational groups, and ⟨·⟩I(u) is the average over
proteins in group I(u).

After decomposing the proteins into sets of identical
orientation and shifting them to the origin, the cross terms
in Eq. (5) can be further simplified. First, we make use of
the fact that the distance of the envelope from the protein is
large enough, such that correlations between the inside and the
outside of the envelope are due to bulk water. Because such
correlations can be assumed to be equal before and after laser
excitation, we can rewrite34As

i (q,∆t)As∗
b, i(q)


I(u) −

Bs
i (q)Bs∗

b, i(q)

I(u)

≈
As

i (q,∆t)
I(u)

As∗
b, i(q)


I(u)

−
Bs

i (q)

I(u)

Bs∗
b, i(q)


I(u). (6)

Second, we again make use of the fact that the experiment
probes correlations only on the length scale of individual
proteins, but not on the protein-protein scale or even on the
scale of the entire solution. Consequently, at fixed orientation
u, the average shifted bulk density can be approximated by

Bs
b, i(r)


I(u) = ρs(1 − Θu(r)), (7)

where ρs is the solvent density and Θu(r) is an indicator
function for an envelope of orientation u and centered at the
origin, that is, Θu(r) takes unity inside that envelope and zero
outside. By the argument above, we here neglect any “holes”
in Bs

b, i
(r) due to proteins other than protein i, and due to finite

size effects of the entire probe volume. The constant in Eq. (7)
contributes in reciprocal space only at q = 0, which cannot be
measured. Hence, for all relevant q, we haveBs

b, i(q)

I(u) = −ρsΘ̃u(q). (8)

Third, neglecting solvent heating, we approximate

⟨As∗
b, i(q)⟩I(u) ≈ ⟨Bs∗

b, i(q)⟩I(u). (9)

Taking together Eqs. (5), (6), (8), and (9), a difference
term can be formulated

Du(q,∆t) = |As
i (q,∆t)|2

I(u) −
|Bs

i (q)|2

I(u)

− 2 Re
As

i (q,∆t) − Bs
i (q)


I(u) ρs

Θ∗u(q)

, (10)

which is calculated from the conformational average of protein
droplets in orientation u before and after excitation. The
difference intensity is then obtained as an integral over all
possible orientations u,

∆I(q,∆t) ∝ 1
4π


SO(3)

du Du(q,∆t). (11)

B. Isotropic case

Let us first consider an isotropic solution, which does
not exhibit any correlation between the internal degrees of
freedom of the protein and the rotational degrees of freedom.
In that case, all Du(q,∆t) are equal up to a rotation and they can
be identified with the difference term in a reference orientation
D0(q′(u),∆t) provided that the momentum transfer q is rotated
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likewise. Formally, Du(q,∆t) can be written as

Du(q,∆t) = D0(R̂u0q,∆t) = D0(q′(u),∆t), (12)

where R̂u0 denotes the rotation matrix that maps the orientation
u onto the preselected distinguished reference orientation u0
and consequently defines a rotated momentum q′(u) B R̂u0q.
The quantity D0(q′,∆t) B Du=u0(q′,∆t) denotes the difference
term in the reference orientation u0 and can be computed
from a MD simulation, after fitting the protein from all
MD snapshots onto a reference structure in orientation u0.
Because of (i) the identity in Eq. (12) and (ii) the invariance of
D̃0(q′,∆t) under rotations around q′, the integration over the
three-dimensional Euler angle u in Eq. (11) can be replaced
by an integration over the two dimensional spherical surface
|q′| = q,

∆Iiso(q,∆t) ∝ 1
4π


|q′|=q

dq′D̃0(q′,∆t). (13)

For the following discussion, it is important to note that q′
is not the momentum transfer q in the reference frame of the
experiment, but instead q′ is the momentum in the reference
frame of a protein at fixed protein orientation u0. Hence,
Eq. (13) shows that the integration over all orientations in
the frame of the experiment can be replaced by an integration
over the surface of a sphere in q′-space (in the reference frame
of the protein). Note that this integration depends only on
the absolute value q, but not on the azimuthal angle β in the
detector. This is consistent with the fact that, in the isotropic
case considered here, no anisotropy is expected on the detector.

Equations (13) and (10) are the final result for isotropic
time-resolved WAXS, which takes the same mathematical
form as the final equation by Park et al.34 for isotropic
WAXS. The elaborate discussion on the change of the
integration variable was presented here to lay the ground
for the calculation of the anisotropic WAXS pattern in the
following paragraph.

C. Anisotropic time-dependent WAXS

An anisotropic WAXS pattern is the consequence of
an anisotropy in the protein ensemble. In TR-WAXS, the
anisotropy in the ensemble follows from the fact that the
excitation probability depends on the orientation of the protein.
In the following, we consider a two-state system with a ground
state G and an excited state E. We assume (i) that all proteins
are in the ground state before laser excitation and (ii) that
the excitation probability P(u) purely depends on the protein
orientation u but not on any other internal degrees of freedom
(Figs. 1(a) and 1(b)). For such a system, it is helpful to
decompose the ensemble of proteins after the laser pulse as|As

i (q,∆t)|2
I(u) = P(u) |Es

i (q,∆t)|2
I(u)

+ [1 − P(u)] |Gs
i (q)|2


I(u) (14)

and As
i (q,∆t)

I(u) = P(u)Es
i (q,∆t)

I(u)
+ [1 − P(u)]Gs

i (q)

I(u), (15)

where G and E denote the Fourier transforms of protein
droplets in the ground and excited state, respectively. The
superscript s indicates again that the densities are shifted to
the center-of-mass of the respective solute. E evolves over
time with the conformational transitions after laser excitation,
and it therefore depends on the time delay ∆t. Before laser
excitation, all proteins are in the ground state, so we have|Bs

i (q)|2

I(u) =

|Gs
i (q)|2


I(u) (16)

and Bs
i (q)


I(u) =

Gs
i (q)


I(u). (17)

With Eqs. (14)–(17), we obtain the anisotropic version of
the difference term (Eq. (10)) as

Du(q,∆t) = P(u)D′u(q,∆t) (18)

with

D′u(q,∆t) |Es
i (q,∆t)|2

I(u) −
|Gs

i (q)|2

I(u)

− 2 Re
Es

i (q,∆t) − Gs
i (q)


I(u)ρs

Θ∗u(q)

. (19)

Figure 1(c) presents an illustration of Eqs. (18) and (19).
For the isotropic case (Eq. (13)), the integration over

orientations u could be replaced by a uniform integration over
the momentum q′ in the reference frame of the protein. For
the anisotropic case, additional consideration is required: for
a fixed momentum transfer q in the frame of the experiment,
a momentum q′ in the reference frame of the protein defines
the orientation of the protein only in two of three dimensions.
The missing degree of freedom is a rotation of the protein
around q (or q′, depending on the frame of reference), which
we denote by the angle ψ. Hence, for a given momentum q, the
orientation u(q′,ψ | q) of the protein is uniquely described by
q′ and ψ. The difference intensity is obtained by an integration
over the surface of a sphere in q′-space and an integration over
the angle ψ,

∆I(q,∆t)
∝ 1

8π2

 2π

0
dψ


|q′|=q

dq′P(u(q′,ψ | q))D̃′0(q′,∆t)

=
1

4π


|q′|=q

dq′w(q′ | q)D̃′0(q′,∆t), (20)

where D′0(q′,∆t) is computed in the reference orientation
u0. Again, D′0(q′,∆t) can be computed from MD simulation
snapshots of proteins in the ground and excited state, after
fitting the frames onto a reference structure of orientation
u0. In Eq. (20), only the excitation probability P(u(q′,ψ |q))
depends on ψ, but not the difference term. The integration of
P(u(q′,ψ |q)) over ψ can therefore be conducted separately
from the average over protein conformations yielding the
weight w(q′ | q) = 

dψ P(u(q′,ψ | q)).

D. Excitation probability proportional to cos2(φ)
In numerous photoactive systems, the excitation prob-

ability was found to be proportional to cos2(φ), with φ
denoting the angle between the excitation dipole moment m
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and the polarization vector l of a linearly polarized laser. We
split the excitation probability Pcos2(u) = ptotpcos2(u) into the
total excitation probability ptot and a normalized orientational
probability pcos2(u). Taking l and m as normalized vectors, we
have for the orientational probability

pcos2(u) = 3[l ·m (u)]2, (21)

where m (u) depends on the orientation u of the protein.
As shown in Appendix A, evaluating the integral over ψ

in Eq. (20) yields

1
2π

 2π

0
dψpcos2(u(q′,ψ |q)) = [ f (q)wm(q′) + 1] , (22)

where we introduced the factor

f (q) = 3
2

(
l · q

q

)2

− 1
2
, (23)

which depends on the angle between l and q, as well as a
weight function

wm(q′) = 3
(

m · q′

q

)2

− 1

= 3 cos2(θ) − 1

∝ Y 0
2 (θ), (24)

which is a function of the angle θ between the momentum q′
and the transition moment m. Notably, the weight wm(q′) is
proportional to a spherical harmonic of second degree Y 0

2 (θ)
and hence orthogonal to an isotropic weight.

Using the result of the integral (22) in Eq. (20) allows one
to rewrite the difference intensity

∆I(q, β,∆t) ∝ ptot[ f (q, β)∆Im(q,∆t)
+∆Iiso(q,∆t)], (25)

where the momentum q is expressed by its absolute value q
and the azimuthal angle β on the detector. Hence, ∆I(q, β,∆t)
can be expressed by exactly two independent components, the
isotropic component ∆Iiso(q,∆t) (Eq. (13)) and an anisotropic
component,

∆Im(q,∆t) = 1
4π


|q′|=q

dq′wm(q′)D′0(q′,∆t). (26)

The contribution of ∆Iiso(q,∆t) to ∆I(q, β,∆t) is independent
of the azimuthal angle β. In contrast, the anisotropic compo-
nent ∆Im(q,∆t) contributes with the factor f (q, β), leading to
an anisotropic scattering pattern.

To summarize this section, an orientational anisotropy
in the ensemble of excited proteins leads to a non-zero
anisotropic component ∆Im(q,∆t). As a consequence, the
scattering pattern is anisotropic along the azimuthal an-
gle β, as determined by the factor f (q, β). Notably, the
conformational transition upon excitation determines the
components ∆Im(q,∆t) and ∆Iiso(q,∆t), but the factor f (q, β)
is independent of the specific system.

E. Rotational diffusion

The anisotropy of the excitation probability p(u) at time
t = 0 leads to an anisotropic orientational distribution of both,

proteins in the excited state and proteins that remained in
the ground state. However, due to rotational diffusion, the
anisotropy in the orientational distributions decays over time.
For the sake of simplicity, we consider only isotropic rotational
diffusion.

The rotational diffusion constant is defined as D
= 1

2 limδt→0⟨(δu)2⟩/δt, where δu denotes the angle of rotation
within time δt. Analogously to translational diffusion, Fick’s
law determines the time evolution of the orientational
distributions via39

∂p(u, t)
∂t

= D∇2
up(u, t), (27)

where ∇2
u denotes the Laplace operator. As outlined in

Appendix B, Eq. (27) can be solved by expanding p(u, t) into
a series of spherical harmonics Ym

l
. For an initial orientational

distribution p(u,0) = pcos2(u), only Y 0
0 and Y 0

2 contribute to
p(u, t); the first being constant in time and the second decaying
with a time constant τ2 = 1/(6D). Consequently, the time-
dependent orientational distribution is

p(u,∆t) ∝ �
e−6D∆t �pcos2(u) − 1

�
+ 1

�
. (28)

Using Eq. (28) together with Eq. (22) allows one to include
the time dependence due to rotational diffusion into Eq. (25),
leading to the central result of the present article,

∆Icos2(q, β,∆t) ∝ ptot
�
e−6D∆t f (q, β)∆Im(q,∆t)

+∆Iiso(q,∆t)�. (29)

F. Circular absorber

The excitation probability pcos2 is typical for a linear
absorber. The heme molecule is an important example of a
circular absorber. Heme absorbs photons that are polarized
along the heme’s plane, but it does not absorb photons that
are polarized along the heme’s normal.40 The normalised
excitation probability of circular absorbers can be written as

pcirc(u) = 3
2


1 − (l ·m (u))2 . (30)

Here, the vector m is the normal to the designated plane of
absorption. Since this probability is a linear combination of
(i) an isotropic probability and (ii) the excitation probability
of a linear absorber, one can easily deduce from Eq. (29) the
difference intensity for a circular absorber as

∆Icirc(q, β,∆t) ∝ ptot
�
− 1

2
e−6D∆t f (q, β)∆Im(q,∆t)

+∆Iiso(q,∆t)�. (31)

Thus, the final result for the circular absorber resembles the
one of a linear absorber, yet with a prefactor of −1/2 for the
anisotropic component.

G. Relations to experimental observables

In a typical experimental setup, the X-ray beam is pointing
in horizontal x-direction and the detector is positioned behind
the sample in the y z-plane, where the y denotes the second
horizontal, and z the vertical axis. The excitation laser is
pointing in z direction, and the laser polarization vector in
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y direction. Each point on the detector is defined through the
momentum transfer q and the azimuthal angle β (defined in
respect to the y-direction). For such a setup, we have

f (q, β) = 3
2

(
ey · q

q

)2

− 1
2

= cos2(β)
(

3
2
− 3q2

8k2

)
− 1

2
(32)

where k = 2n/λ denotes the wavenumber of the X-ray
beam. Eq. (32), together with Equation (29), yields the two-
dimensional (2D) projection of the anisotropic difference in-
tensity that is measured by the detector.

Since the pattern contains only two independent compo-
nents, it is useful to reduce the experimental 2D intensity
pattern to the following quantities: (i) intensities along
horizontal (β = 0◦) and vertical (β = 90◦) cuts, denoted as ∆Ih
and ∆Iv, respectively; (ii) quarter 90◦-averages centered along
the horizontal (β = 0◦ ± 45◦) and the vertical (β = 90◦ ± 45◦)
axes, denoted as ∆Ihqa and ∆Ivqa, respectively; and (iii) the
azimuthal average, denoted ∆Iaa. To facilitate the transfer to
experimental data, Table I reports a number of relations that
allow for the calculation of experimental observables from the
two calculated components ∆Im(q) and ∆Iiso(q), or vice versa.
We also report relations for a laser polarization parallel to the
X-ray beam as well as for circular and elliptically polarized
light. The table reports relations only for a linear absorber. The
results for a circular absorber are easily obtained by adding a
prefactor of −1/2 to the anisotropic component.

III. METHODS

A. Prolate spheroid model

As a simple model for a conformational transition of a
protein, we considered volume-preserving elongations of a
sphere into a prolate spheroid, by scaling the z-axis by a factor
α = 1.1 and the other two axes by 1/

√
α. The densities of the

solute and the solvent were assumed to be homogenous, and
no fluctuations were considered. Then, the difference term in
Eq. (19) follows

D0(q · R)
� 3

4πR3∆ρ
�2 = |Eα(q · R)|2 − |S(q · R)|2, (33)

where R denotes the radius of the sphere and ∆ρ the
density contrast between solute and solvent. Eα and S denote
the Fourier transforms of a spheroid and of a sphere of
unit density and unit volume. The dimensionless difference
intensity ∆I(q, β)/I0, with I0 = ptot

� 3
4πR3∆ρ

�2, was computed
using Eqs. (33) and (25).

The sphere and the spheroid were modelled by a
spatial envelope that was constructed from an icosphere of
5120 triangular faces, as described previously.33 The Fourier
transforms of these volumes were computed numerically by
subdividing each pyramid, formed by one face and the origin,
into 100 volume bins. These bins were sufficiently small to
compute the structure factors even at large q. |S(q′)|2 and
|Eα(q′)|2 were calculated for 1500 q′-vectors per |q′|, which
were distributed according to the spiral method.41

TABLE I. Relations between experimental observables (row 2-4) and the two components ∆Iiso and ∆Im (last row). The difference intensities for linear laser
polarization parallel (1) and perpendicular (2-6) to the x-ray beam as well as circular (9) and elliptical (10) laser polarization. For the elliptically polarized laser,
the intensity of the perpendicular component was taken to be twice the intensity of the perpendicular component. In addition, differences (7, 8) and superpositions
(11, 12) are reported that correspond to the anisotropic ∆Im and isotropic ∆Iiso component, respectively. Symbols are defined in the main text.

Num. Symbols
Laser

polarisation Sampling of the 2D pattern Calculation from ∆Im and ∆Iiso

1 ∆I ∥ Parallel Any cut/azimuthal average e−6Dt
(
− 1

2 +
3q2

8k2

)
∆Im+∆Iiso

2 ∆I⊥aa Perpendicular Azimuthal average e−6Dt
(

1
4 −

3q2

16k2

)
∆Im+∆Iiso

3 ∆I⊥h Perpendicular Horizontal cut e−6Dt
(
1− 3q2

8k2

)
∆Im+∆Iiso

4 ∆I⊥v Perpendicular Vertical cut e−6Dt
(
− 1

2

)
∆Im+∆Iiso

5 ∆I⊥hqa Perpendicular Horizontal 90◦-average e−6Dt
(
π+6
4π −

(3π+6)q2

16πk2

)
∆Im+∆Iiso

6 ∆I⊥vqa Perpendicular Vertical 90◦-average e−6Dt
(
π−6
4π −

(3π−6)q2

16πk2

)
∆Im+∆Iiso

7 I∆hv=∆I
⊥
h −∆I

⊥
v Perpendicular Difference between

horizontal and vertical cuts
e−6Dt

(
3
2 −

3q2

8k2

)
∆Im

8 I∆hvqa=∆I
⊥
hqa−∆I

⊥
vqa Perpendicular Difference between

horizontal and vertical
90◦-averages

e−6Dt
(

3
π −

3q2

4πk2

)
∆Im

9 ∆I cir= 1
2∆I

∥+ 1
2∆I

⊥
aa Circular Azimuthal average e−6Dt

(
− 1

8 +
3q2

32k2

)
∆Im+∆Iiso

10 ∆I elli= 1
3∆I

∥+ 2
3∆I

⊥
aa Elliptical Azimuthal average ∆Iiso

11 ∆I⊥h +
(
2− 3q2

4k2

)
∆I⊥v Perpendicular Superposition of horizontal

and vertical cuts

(
3− 3q2

4k2

)
∆Iiso

12
(
π−6
4π −

(3π−6)q2

16πk2

)
∆I⊥hqa+(

− π+6
4π +

(3π+6)q2

16πk2

)
∆I⊥vqa

Perpendicular Superposition of horizontal
and vertical 90◦-averages

(
− 3

π +
3q2

4πk2

)
∆Iiso
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B. MD simulations of PYP

MD simulations of 50 ns for PYP were conducted in
the ground state pG, and in the excited states pR0, pR1,
and pR2 following the nomenclature by Schotte et al.24

Initial coordinates for the excited states were taken from
crystallographic structures determined by time-resolved Laue
crystallography24 (protein data bank (PDB) codes 4B9O,
4BBT, and 4BBU). Coordinates of the ground state were
taken from Ref. 42 (pdb code 1TS7; altLoc A). This ground
state structure was chosen because it exhibits identical side
chain orientations as the exited state structure. Position-
restraining potentials were applied to backbone atoms (force
constant 2000 kJ mol−1 nm−2), to heavy atoms of the side
chains (force constant 500 kJ mol−1 nm−2), and to heavy
atoms of the chromophore (10 000 kJ mol−1 nm−2). This
procedure ensured that our calculations averaged over solvent
fluctuations, while the heavy atoms of the protein remained in
their crystallographic positions.

The proteins were solvated in 17 000 explicit water
molecules; no counter-ions were used for neutralization to
achieve rapid convergence of the scattering patterns. The
protein was described by the Amber03 force field,43 and
the TIP3P water model was applied.44 Parameters for the
chromophore in the ground and the excited state were kindly
provided by G. Gronhof. The simulations were conducted by
the GROMACS simulation software.45 The temperature was
controlled at 300 K using a stochastic-dynamics integration
scheme (τ = 0.3 ps), and the pressure was kept at 1 bar
using the weak coupling scheme46 (τ = 1 ps). The SETTLE47

algorithm was applied to constrain the bond lengths and
angles of water molecules, and LINCS48 was used to constrain
all other bond lengths, allowing for a time step of 2 fs.
Electrostatic interactions were calculated using the particle-
mesh Ewald method,49,50 and dispersive interactions were
described by a Lennard-Jones potential with a cutoff at 1 nm.
The WAXS patterns were computed using snapshots from
every 2 ps, after removing the first 5 ns for equilibration (a
total of 22 500 frames for each state).

A common envelope Θ0(r) was constructed around the
protein at a distance of 0.8 nm from all protein atoms of
all frames, after fitting the protein onto a reference structure.33

We have previously shown that an envelope distance of 0.8 nm
is sufficient to account for hydration layer effects in solution
scattering.33 A typical snapshot of PYP including its hydration
layer, as defined by the envelope, is shown in Fig. 3(a). The
difference term D0(q) as well as ∆Iiso(q) and ∆Im(q) was
computed for 80 q-values, using 2000 q′-vectors per q. A
monochromatic X-ray source of 12 keV was assumed. Atomic
form factors for protein and water were computed as described
previously.33 All averages were calculated for 10 disjunct time
bins of the trajectories. The standard error of the mean is
reported as a measure of the statistical uncertainty.

C. Excitation saturation

The excitation probability pcos2 in Eq. (21) is considered
as a good approximation for low laser excitation intensities.
However, at high laser intensities, saturation plays a major

role. Then, the excitation probability is better described by

Psat(u) = ptot


1 − e−a(l·m(u))2


(34)

with a total excitation probability ptot = 1 −
√
πerf(√a)/

(2√a).51 Here, a is a factor referring to the excitation energy
density, i.e., the excitation laser intensity. The probability in
Eq. (34) contains the pcos2 case in the limit of small a. For the
excitation probability of Eq. (34), we numerically solved the
integration over ψ in Eq. (20) providing a weight w(q′|q, β) for
each combination of momentum transfer q′ in the reference
frame of the protein and for each point on the detector q(q, β).
Applying these weights in Eq. (20) while integrating the
difference term D0(q′) yields the 2D scattering pattern.

IV. RESULTS

A. Spheroid model

We illustrate the implication of the above-derived equa-
tions using a simple model of a sphere that is distorted into a
prolate spheroid. Two cases are considered that differ in orien-
tations of the excitation dipole m with respect to the elongation
axis, namely, m is either parallel (denoted as S∥, Fig. 2(a)) or
perpendicular (S⊥, Fig. 2(b)) to the elongation axis. Hence,
the initial and final shapes of S∥ and S⊥ are identical, but the
orientational distribution of excited states differ between the
two cases, leading to different intensity patterns.

The isotropic component ∆Iiso(q) (Eq. (13)) and the an-
isotropic component ∆Im(q) (Eq. (26)) are shown in Figs. 2(c)
and 2(d), respectively. As expected, ∆Iiso(q) does not depend
on the direction of m. In contrast, ∆Im(q) highly depends on
m, demonstrating that ∆Im(q) contains information which is
not encoded in ∆Iiso(q) (compare Fig. 2(d) red and blue).

Figure 2(e) presents the azimuthal average on the detector,
Iaa(q), and Fig. 2(f) shows the difference between the
horizontal and vertical 90◦-averages, I∆hvqa(q), which were
computed according to Table I. I∆hvqa is proportional to ∆Im,
whereas Iaa represents a linear combination of ∆Iiso and
∆Im. Hence, the azimuthal average on the detector does not
correspond to a spherical average in Fourier space. Thus,
small-angle X-ray scattering (SAXS) predictions by tools such
as Crysol, FoXS, or WAXSiS,38,52,53 which compute ∆Iiso,
should not be compared to Iaa. Instead, relations listed in
Table I demonstrate how to compute ∆Iiso from a scattering
pattern, allowing direct comparison to such software tools.

The contribution of ∆Im to Iaa decays over time due to
rotational diffusion (Eq. (29)). Hence, Iaa(q) gradually converts
into a curve that is proportional to ∆Iiso(q) without the require-
ment of any additional internal conformational transitions of
the protein. This finding has implications on the interpretation
of TR-WAXS experiments on the timescale of rotational
diffusion, as care has to be taken when analysing the time-
dependent components of Iaa by, for instance, singular value
decomposition. Here, rotational diffusion can manifest itself as
one or (for anisotropic diffusion) multiple time-scales, which
might be confused with internal conformational transitions of
the protein. It is interesting to note that, in this example, the
anisotropy of the 2D pattern is approximately proportional
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FIG. 2. ((a) and (b)) Model of a globular protein (black). One axis of the
sphere is elongated and the other two are contracted to obtain a prolate
spheroid of equal volume (colored). The elongated axis is chosen (a) par-
allel and (b) perpendicular to the transition moment (black arrow). (c) The
isotropic component (Eq. (13)), (d) the anisotropic component (Eq. (26)), (e)
the azimuthal average, and (f) the difference between horizontal and vertical
90◦-averages I∆hvqa are plotted in blue and red for the (a) parallel and (b)
perpendicular transition moment, respectively. Plotted in a dimensionless
fashion neglecting the q/k dependence in Table I. This approximation is valid
for q/k < 0.1 (e.g., q < 6 nm and k = 60 nm≈ 12 keV/(~c)).

to the elongation factor α. From several calculations with
elongation factors in the range 0.9 < α < 1.1, we found that 4.55

0 Im(q) dq ≈ −0.07∆αI0, where∆α = α − 1 quantifies the
distortion of the sphere, supporting a similar statement by Cho
et al.23

B. PYP

PYP is a prototypic photoactive protein that undergoes
a conformational cycle upon photoexcitation. Hence, confor-

FIG. 3. (a) Cartoon representation of PYP and water molecules within the
envelope (grey surface). The chromophore is highlighted as colored sticks
in the ground state pG (blue, PDB code 1TS7; altloc A),42 and in excited
states pR0 (red, 4B9O), pR1 (orange, 4BBT), and pR2 (green, 4BBU).24 The
transition dipole along the chromophore is indicated by a black arrow.23

(b) Two dimensional difference scattering pattern between pR0 and pG,
calculated using Eqs. (25) and (32). The horizontal axis is parallel to the
polarization vector of the excitation laser, and the vertical axis is parallel to
the excitation laser beam. Intensities in (b) and following plots are presented
in e2/nm normalised by the excitation probability ptot and by the number of
proteins N .

mational transitions of PYP have been studied using various
time-resolved methods, including WAXS,15,23 Laue crystal-
lography,24,42,54–56 and serial crystallography.57 Here, we used
PYP to validate our methods for the calculation of anisotropic
WAXS patterns. Accordingly, WAXS patterns were computed
for structures from Laue crystallography and compared to
published experimental patterns.23 Excited state structures
pR0, pR1, and pR2 were taken from Anfinrud and coworkers.24

The backbone atoms of those structures exhibit a very small
root mean square deviation (RMSD) of less than 0.21 Å with
respect to the ground state. Larger structural differences are
mainly found in the vicinity of the chromophore.

1. Anisotropic WAXS of PYP

We computed 2D scattering patterns of the difference
intensity between excited states and the ground state using
Eqs. (25) and (32) (Fig. 3(b)). Coordinates were taken from
molecular dynamics simulations with position restraints on all
heavy atoms of the protein (see Sec. III), whereas water coor-
dinates were freely sampled. The azimuthal average Iaa and
the differences of 90◦-averages I∆hvqa were derived according
to the relations in Table I. Figure 4(a) presents the calculated
Iaa of pR0, pR1, and pR2 as colored curves. Using the same
color coding, Figure 4(b) presents calculated I∆hvqa. Statistical
errors, which were computed by splitting the trajectories into
10 bins, are indicated as shaded areas. The WAXS patterns
of pR0, pR1, and pR2 significantly differ, demonstrating that
the calculations are able to resolve small conformational
transitions on a sub-Ångström scale. In addition, Figure 4
illustrates that the I∆hvqa contains information which is not
encoded in Iaa. For instance, I∆hvqa of pR0 and pR1 highly differ
at 1 nm−1, whereas Iaa of pR0 and pR1 resemble each other.
Hence, the additional information contained in the anisotropy
can in principle be utilized to discriminate between different
conformational states. To illustrate the effect of rotational
diffusion, we computed Iaa and I∆hvqa for pR0 at a time delay of
10 ns, assuming a rotational time constant of 1/(6D) = 7.8 ns
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FIG. 4. Difference scattering curves of excited states pR0 (red), pR1 (orange),
and pR2 (green) of PYP with respect to the ground state pG. (a) Azimuthal
average Iaa. (b) The difference between horizontal and vertical azimuthal
averaged quarters I∆hvqa. Violet curves: difference curve for pR0 including
rotational diffusion at a delay time of 10 ns. Black dashed lines: experimental
curves for a time delay of 316 ps (a) and delay times average from 100 ps to
10 ns (b), both taken from Ref. 23. The scale of the experimental curves is
arbitrary.

(Figs. 4(a) and 4(b), purple curves).58 For PYP, I∆hvqa quickly
decays with time whereas Iaa is hardly affected by rotational
diffusion.

For the sake of completeness, Fig. 4 presents experimental
TR-WAXS curves taken from Cho et al. as dotted curves.23

Figure 4(a) shows experimental data at a time delay of
316 ps, at which pR0 and pR1 were suggested as the dominant
crystallographic conformations.24 Figure 4(b) presents the
I∆hvqa curve that had been reported as a logarithmic time
average between 100 ps and 10 ns. Overall, some similarity
is found between the experimental data and the curves
computed from the crystallographic structures, suggesting
that the conformational transition in the crystal at least
partly resembles the transition in solution on the nanosecond

time scale. However, none of the crystallographic structures
yield quantitative agreement with the experimental curves.
These remaining discrepancies indicate that the static crystal
structures only partly reflect the state in solution. In addition,
the lack of protein fluctuations in the position-restrained
simulations, as well as the relatively low signal-to-noise ratio
in the anisotropic experiment may account for some of the
deviations. Hence, additional calculations and experiments
will be required to resolve which crystallographic structures (if
any) best represent the conformational transitions in solution.

2. On the relation between the sample and scattering
anisotropy

As discussed above, I∆hvqa encodes structural information
that is not contained in Iiso. The origin of this additional
information may not be obvious since the relations between
conformational transitions, D′0(q′), and the observables I∆hvqa
and Iaa are only little intuitive. Thus, to shed some light on
these relations, we illustrate the calculation of I∆hvqa and Iaa in
Fig. 5.

Figures 5(a)-5(d) shows D′0(q′) as calculated from the
pR0 and pG structures. The subplots A-D show D′0(q′) on
spheres in q′-space at momentum transfers of 1.5, 3.0, 4.6,
and 6.1 nm−1, respectively. The figures illustrate that, as
expected,59 D′0(q′) on the surface of the q′-sphere become
increasingly rough with increasing q. The weights used to
compute Iaa from D′0(q′) are visualized in Fig. 5(e). These
weights are not uniform, demonstrating again that Iaa is not
equivalent to Iiso. In addition, Fig. 5(f) visualizes the weights
used to compute the anisotropic observable I∆hvqa from D′0(q′),
resembling the spherical harmonic Y 0

2 . One consequence of the
anisotropic weight shown in Fig. 5(f) is that features in D′0(q′)
near the poles (black dots in Fig. 5) are amplified in I∆hvqa,
such as the positive (red) region at 3.0 nm−1 (Fig. 5(b)) or the
negative (blue) region at 4.6 nm−1 (Fig. 5(c)). Hence, those
localized features in D′0(q′) manifest itself in a positive I∆hvqa

FIG. 5. Difference term D′0(q′) (Eq. (19)), calculated from the structures pR0 and pG on a unit sphere, for momenta (a) q = 1.5 nm−1, (b) q = 3.0 nm−1, (c)
q = 4.6 nm−1, and (d) q = 6.1 nm−1. ((e)-(g)) Weights w(q′|q) (Eq. (20)) for the calculation of (e) Iaa, (f) I∆hvqa, and (g) I∆hvd. Each dot corresponds to one
q′-vector. The orientation of the sphere corresponds to the orientation of the protein in Fig. 3(a). The direction of the transition moment m is indicated by a black
dot (large arrow in Fig. 3(a)).
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FIG. 6. (a) Scattering pattern of pR0
and pG for a high excitation laser
intensity (a = 10). (b) Scattering in-
tensity (red) I∆hvqa(q = 3.0 nm−1) and
(green) I∆hvd(q = 3.0 nm−1) (ignoring
sign) calculated from 2D scattering pat-
tern for increasing excitation laser in-
tensities. Intensities reported in relation
to I∆hvqa(q = 3.0 nm−1) in the low in-
tensity limit. Black curve: total orien-
tational excitation probability ptot for
corresponding laser intensities. Dashed
curve: the product between intensities
and probabilities yields an estimate for
the signal on the detector and hence, for
the signal-to-noise ratio. (c) I∆hvqa and
(d) I∆hvd from calculations of pR0 and
pG for different laser intensities.

at 3.0 nm−1 and a negative I∆hvqa at 4.6 nm−1. In contrast, due
to the more uniform weights entering Iaa, such features may
not be apparent in Iaa.

3. Saturated excitation: additional anisotropic
components

So far, we presented results for excitation probability
proportional to pcos2(u) = cos2(φ), which strictly holds only at
low excitation laser intensities, such that saturation does not
play a role. At high excitation laser intensities, as described
in Section III C, the excitation probability is better described
by Eq. (34). Hence, at high intensity, the 2D scattering pattern
is not merely a sum of the two components Iiso and Im, but
additional components also contribute, as previously pointed
out.26,30 As an additional component, we here analysed the
quantity

I∆hvd(q) = Ih(q) + Iv(q) − 2Id(q), (35)

where Id(q) denotes the density along the diagonal cuts of
the 2D pattern. The corresponding weights w(q′|β,q) are
plotted in Fig. 5(g). They are clearly not a superposition of the
two components found for unsaturated excitation, but instead
resemble a spherical harmonic of fourth degree.

To investigate the role of saturation in TR-WAXS, we
computed 2D scattering patterns from the pR0 and pG
structures including saturation effects for excitation energy
densities between a = 0.1 and a = 100. As expected, scatter-
ing patterns for a = 0.1 are nearly indistinguishable to patterns
which do not account for any saturation effects (see Fig. 3(b)).
In contrast, at higher intensities, increasing differences to
the pcos2 case emerge. As an example, visual inspection of
the pattern computed with a = 10 (Fig. 6(a)) shows that the
anisotropy was reduced compared to the pattern at low
intensities (compare to Fig. 3(b)). To quantify this effect,
Fig. 6(b) (red) shows the intensity I∆hvqa(q = 3 nm−1) of
the first maximum at saturated laser intensities, normalized
with respect to the curve not taking saturation into account

(compare to Fig. 4(b)). Indeed, I∆hvqa decays with increasing
laser intensity as shown in Fig. 6(b) (red solid line), demon-
strating a loss of the anisotropy. In contrast, the additional
component I∆hvd(q) is not relevant at low saturation, but it
increases with increasing saturation (Fig. 6(b), green solid
line). This finding is further confirmed in Figures 6(c) and
6(d), which show I∆hvqa(q) and I∆hvd(q) over the entire q range
for various laser intensities, demonstrating again that I∆hvqa(q)
decays whereas I∆hvd(q) rises with increasing a.

Multiplying these intensities with the total excitation
probability (Fig. 6(b), black curve) at given laser intensity
provides an estimate of the magnitude of I∆hvqa and I∆hvd in
the difference pattern (Fig. 6(b), dotted curves). These curves
exhibit maxima at a ≈ 3 (ptot ≈ 0.5) and a ≈ 18 (ptot ≈ 0.75)
for the quantities I∆hvqa(q) and I∆hvd(q), respectively. These
results provide an estimate for the laser intensity that yields
the best signal-to-noise ratio for I∆hvqa(q) and I∆hvd(q). It is
important to note that increasing a changes only the magnitude
of the I∆hvqa(q) curve (Fig. 6(c)), while the shape of I∆hvqa(q)
is nearly unaffected. This finding suggests that the relations
shown in Table I, which were derived for low laser intensities,
remain a good approximation even at high excitation laser
intensities.

V. DISCUSSION

We have presented a method to compute isotropic
or anisotropic time-resolved WAXS patterns from explicit-
solvent MD simulations. For the example of PYP presented
here, simulations were conducted with restrained heavy
atoms (but flexible water), in order to compare crystallo-
graphic structures to experimental WAXS data. However, the
method is equally suitable to compute TR-WAXS patterns
from unrestrained simulation after photoexcitation, allowing
rigorous validation of non-equilibrium simulations against
experimental TR-WAXS data. Work along these lines will
be published elsewhere.
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As discussed previously,34 the calculations rely on two
assumptions: (i) the hydration layers of the proteins do not
overlap, allowing the decomposition of Eq. (3); (ii) corre-
lations between proteins are negligible. These assumptions
are best fulfilled at low protein concentration. At higher
concentrations, however, proteins may aggregate or exhibit
long-range order due to protein-protein repulsions, which
may lead to some discrepancies between experiment and
calculations at small angles.

Assuming an excitation probability proportional to
cos2(φ), the calculation showed that the 2D intensity differ-
ence pattern is given by exactly two components, ∆Iiso(q)
and ∆Im(q). Here, ∆Iiso(q) is computed from the uniform
orientational average of the solute, that is, ∆Iiso(q) is the
quantity reported by common SAXS prediction software such
as WAXSiS, Crysol, or FoXS.38,52,53 These two components
contain independent information because they are computed
by projecting the difference term D0(q′) onto two different
spherical harmonics. Hence, if noise is neglected, an aniso-
tropic WAXS pattern contains exactly twice the information
of an isotropic pattern (ignoring the very small angle regime).
To estimate the increased information of anisotropic WAXS
more rigorously, the information loss due to noise would
need quantification using, for instance, the noisy channel
theorem.60 It is important to note that ∆Iiso(q) is not equivalent
to the intensity ∆Iaa(q) computed from a uniformly weighted
azimuthal average on the detector. Instead, ∆Iiso(q) can be
reconstructed from the anisotropic pattern using, for instance,
averages over the horizontal and vertical 90◦-segments on the
detector (Table I).

If a protein contains multiple chromophores, such as
phytochrome, the excitation probability is not proportional
to cos2(φ). For such cases, the methods shown here are still
applicable. However, the integral of Eq. (20) might have to be
evaluated numerically, and the final difference patterns might
contain additional independent components.

Rotational diffusion leads to a decay of the contribution
of ∆Im(q) and, hence, to a decay of the anisotropy in the
pattern. Consequently, ∆Iaa(q) decays exponentially towards
∆Iiso(q) with a time constant of 1/(6D). If the analysis of
a TR-WAXS experiment is restricted to ∆Iaa(q), that decay
might be misinterpreted in terms of an internal conformational
transition. The risk for such a misinterpretation can be
reduced by extracting ∆Iiso(q) and ∆Im(q) from the 2D
patterns using the relations in Table I. Alternatively, the
azimuthal average of a pattern obtained with an elliptically
polarized excitation laser (whose intensity perpendicular to the
X-ray beam is twice the one parallel to the X-ray beam)
naturally corresponds to the isotropic component ∆Iiso(q).
Note that we restricted the analysis here to isotropic rotational
diffusion, which strictly holds only for spherical proteins.
In general, rotational diffusion is anisotropic and must be
described by a 3 × 3 diffusion tensor. Anisotropic rotational
diffusion has been studied in the context of anisotropic
fluorescence and it was found that the diffusion process results
in up to 6 distinct timescales.39 In such cases, orientational
distribution of the protein is not merely a superposition of
two spherical harmonics and, beside ∆Im(q), additional aniso-
tropic components may contribute to the scattering patterns.

Thus, differentiating between internal and rotational degrees
of freedom may be increasingly challenging. MD simulation
can in principle be used to characterize anisotropic diffu-
sion, and may thus guide the interpretation of such complex
experiments.

High intensities of the excitation laser lead to excitation
probabilities that are not proportional to cos2(φ). We could
numerically show that this effect allows one to obtain
additional structural information, e.g., from the quantity
I∆hvd(q). The underlying principle of using saturation to
overcome resolution limits, resembles the principle of stim-
ulated emission depletion (STED) superresolution micros-
copy.61 Here, we focussed on the consequence of broadening
the orientational distribution as compared to cos2(φ) using
saturation effects. However, it may be equally possible to
generate a narrower orientational distribution by using a
perpendicular de-exciting laser beam as done in a microscopic
context.62 Conventional isotropic solution scattering reduces
the three-dimensional density to a one-dimensional signal in
Fourier space. By measuring the anisotropy taking saturation
effects into account, it is in principle possible to reconstruct
structural information along an additional dimension. Only the
dimension corresponding to the rotation around the excitation
dipole remains inaccessible.

VI. CONCLUSIONS

Next-generation light sources, such as free-electron X-ray
lasers, provide time-resolution in the femtosecond regime at
very high brilliance. They will allow for measurements of
anisotropic TR-WAXS patterns of conformational transitions
of biomolecules at excellent signal-to-noise ratio. We have pre-
sented a method for accurate predictions of anisotropic WAXS
patterns based on explicit-solvent MD. The calculations are
highly predictive because they fully account for effects from
hydration and thermal fluctuations. The analysis of saturation
effects suggests that the anisotropic component Im is obtained
at the best signal-to-noise ratio if ∼50% of all proteins
were excited. Notably, saturation effects at high intensities
of the excitation laser open possibilities to extract additional
structural information. We expect that the present article lays
the ground for a structural interpretation of anisotropic TR-
WAXS experiments of biomolecules.

ACKNOWLEDGMENTS

We are grateful to G. Groenhof for sharing the topologies
of PYP, and K. Atkovska for carefully reading the manuscript.
Financial supported by the Deutsche Forschungsgemeinschaft
is gratefully acknowledged (Grant No. HU 1971/1-1).

APPENDIX A: INTEGRATION OVER ψ

Evaluating the integral over ψ in Eq. (20), we get 2π

0
dψpcos2(u(q′,ψ |q))

= 3

|q′|=q

dψ(l ·m(q′,ψ))2 (A1)
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= 3
 2π

0
dψ

��
lq + l⊥

�
·
�
mq(q′) +m⊥(q′,ψ)��2 (A2)

= 3
 2π

0
dψ ′

�
lqmq(q′) + l⊥m⊥(q′) cos(ψ ′)�2 (A3)

= 2π

3l2

qm2
q(q′) + 3

2
l2
⊥m2
⊥(q′)


(A4)

= 2π
(

3
2

l2
q −

1
2

) (
3m2

q(q′) − 1
)
+ 1


(A5)

= 2π [ f (q)wm(q′) + 1] . (A6)

Here, we decomposed the vector l as l = lq + l⊥, where
lq B (l · q)q/q2 is the component of l parallel to q, and
l⊥ B l − lq is the component perpendicular to q. Analogously,
we decomposed m = mq +m⊥ into components parallel
and perpendicular to q. Eq. (A3) uses the orthogonality of
the components parallel and perpendicular to q, that is,
lq ·m⊥ = mq · l⊥ = 0. The integration variable was changed
to the angle ψ ′ = cos−1 m⊥·l⊥

l⊥m⊥
between the m⊥ and l⊥, which

is defined for the relevant cases of l⊥ , 0 and m⊥ , 0. After
the integration, no cross terms are left in Eq. (A4), leading to
the final result of Eq. (A5). The factor f (q) and the weight
function wm(q′) are defined in the main text.

APPENDIX B: EXPANSION IN SPHERICAL
HARMONICS

Equation (27) can be solved by expanding p(u, t) into
a series of spherical harmonics Ym

l
of degree l and order

m, because they form an orthogonal set of solutions to the
Laplace equation,∇2

uY
m
l
= −l(l + 1)Ym

l
. Here, each eigenvalue

−l(l + 1) corresponds to a time constant τl = 1/(D l(l + 1)) in
the decay of p(θ, t) towards an isotropic distribution.

Assuming that the excitation probability is proportional
to cos2(φ), we take for the orientational distribution at t = 0,

p(φ,0) = cos2(φ) = 2
√
πY 0

0 +
4
√
π
√

5
Y 0

2 . (B1)

Here, p(φ,0) was written as a linear combination of two
spherical harmonics, Y 0

0 =
1

2
√
π

and Y 0
2 =

√
5

4
√
π

�
3 cos2 φ − 1

�
;

the first being constant in time and the second decaying with
a time constant τ2 = 1/(6D). Thus, the solution of Eq. (27)
under the given initial conditions is

p(θ, t) = e−6Dt
�
3 cos2 φ − 1

�
+ 1. (B2)

Following the calculation of Appendix A, we have

1
2π

 2π

0
dψpcos2(u(q′,ψ |q), t)

= e−6Dt [ f (q)wm(q′) + 1 − 1] + 1

= e−6Dt f (q)wm(q′) + 1, (B3)

which leads to the final result of Section II E (Eq. (29)).
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