SUPPORTING INFORMATION FOR

Structural Determinants of Phosphopeptide Binding to the N-Terminal Src Homology 2 Domain of the SHP2 Phosphatase

Massimiliano Anselmi, 1,,\uparrow Paolo Calligari, $1, \ddagger$ Jochen S. Hub, ${ }^{2}$ Marco Tartaglia, ${ }^{3}$ Gianfranco

Bocchinfuso, 1, * Lorenzo Stella. 1, *

1 Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy.

2 Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6,

66123 Saarbrücken, Germany.

3 Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù,

IRCCS, 00146 Rome, Italy.
\ddagger contributed equally

* to whom correspondence should be addressed

ANALYSIS OF AVAILABLE EXPERIMENTAL STRUCTURES OF SH2 DOMAINS

Two structural variables discussed for the MD simulations of the $\mathrm{N}-\mathrm{SH} 2$ domain of SHP2
(Figure 9) were calculated also for the available experimental structures of SH 2 domains. In the case of the $\mathrm{N}-\mathrm{SH} 2$ domain, these variables were defined as:

- the "opening" of the central β-sheet, measured as the distance between C_{α} of residues Asp40 (strand $\beta 2$) and Gln57 (strand $\beta 3$);
- the "opening" of the pY-loop, measured as the average distance between C_{α} of Thr42 (strand $\beta 2$) and C_{α} atoms of the five central residues belonging to the pY -loop (Ser34, Lys35, Ser36, Asn37, Pro38).

In the case of the experimental structures of SH 2 domains, each structure was superimposed to 1AYD (X-ray structure of unbound SHP2 N-SH2), using the "matchmaker" function of UCSF Chimera [Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comp. Chem. 2004, 25, 1605-1612.], and structurally equivalent residues were used to calculate the aforementioned variables.

The following experimental structures were used for this analysis:

NMR structures: 1ab2, 1aot, 1aou, 1bfi, 1bfj, 1blj, 1blk, 1csy, 1csz, 1fhs, 1fu5, 1fu6, 1ghu, 1hcs, 1hct, 1ju5, 1ka6, 1ka7, 1lui, 1luk, 1lum, 1lun, 1mw4, 1oo3, 1oo4, 1pic, 1qg1, 1rja, 1tce, 1wqu, 1x0n, 1x6c, 1z3k, 2bbu, 2cr4, 2crh, 2cs0, 2dcr, 2dly, 2dlz, 2dm0, 2dvj, 2ecd, $2 e k x, 2 e l 8,2 e o 3,2 e o 6,2 e o b, 2 e t z, 2 e u 0,2 e y v, 2 e y y, 2 e y z, 2 f c i, 2 g e 9,2 g s b, 2 j y q, 2 k 79$, $2 k 7 a, 2 k k 6,2 k n o, 213 t, 214 k, 216 k, 2 l c t, 2 l n w, 2 l n x, 2 l q n, 2 l q w, 2 m c 1,2 m k 2,2 m q i, 2 m r j, 2 m r k$, 2pld, 2ple, 2pna, 2pnb, 2rmx, 2ror, 2rsy, 2rvf, 2ysx, 2yu7, 3hck.

X-ray structures: 1a07, 1a08, 1a09, 1a1a, 1a1b, 1a1c, 1a1e, 1a81, 1ad5, 1aya, 1ayb, 1ayc, 1ayd, 1bf5, 1bg1, 1bhf, 1bhh, 1bkl, 1bkm, 1bm2, 1bmb, 1cj1, 1cwd, 1cwe, 1d1z, 1d4t, 1d4w, 1f1w, 1f2f, 1fbz, 1fmk, 1fyr, 1g83, 1gri, 1h9o, 1i3z, 1ijr, 1is0, 1jwo, 1jyq, 1jyr, 1jyu, 1k9a, 1kc2, 1ksw, 1lcj, 1lck, 1lkk, 1lkl, 1m27, 1m61, 1mil, 1nrv, 1nzl, 1nzv, 1o41, 1o42, 1o43, 1o44, 1045, 1o46, 1o47, 1o48, 1o49, 1o4a, 1o4b, 1o4c, 1o4d, 1o4e, 1o4f, 1o4g, 1o4h, 1o4i, 104j, 104k, 1o4l, 104m, 104n, 104o, 1o4p, 1o4q, 1o4r, 1opk, 1opl, 1p13, 1qad, 1qcf, 1r1p, 1r1q, 1r1s, 1rpy, 1rqq, 1sha, 1shb, 1shd, 1skj, 1spr, 1sps, 1tze, 1uur, 1uus, 1x27, 1xa6, 1y1u, 1y57, 1yvl, 1zfp, 2abl, 2aoa, 2aob, 2aug, 2b3o, 2c0i, 2c0o, 2c0t, 2c9w, 2ci8, 2ci9,

2cia, 2dx0, 2fo0, 2h46, 2h5k, 2h8h, 2hck, 2hdv, 2hdx, 2hmh, 2huw, 2iug, 2iuh, 2iui, 2izv, 2oq1, 2ozo, 2ptk, 2qms, 2shp, 2src, 2vif, 2y3a, 3bkb, 3c7i, 3cbl, 3cd3, 3cwg, 3cxl, 3eac, 3eaz, 3gqi, 3gxw, 3gxx, 3hhm, 3hiz, 3imd, 3imj, 3in7, 3in8, 3k2m, 3kfj, 3m7f, 3maz, 3mxc, 3mxy, 3n7y, 3n84, 3n8m, 3nhn, 3ov1, 3ove, 3pjp, 3pqz, 3ps5, 3psj, 3psk, 3qwx, 3qwy, 3s81, 3s8n, 3s8o, 3s9k, 3t04, 3tkz, 3tl0, 3uf4, 3us4, 3uyo, 3vrn, 3vro, 3vrp, 3vry, 3vrz, 3vs0, 3vs1, 3vs2, 3vs3, 3vs4, 3vs5, 3vs6, 3vs7, 3wa4, 4d8k, 4dgp, 4dgx, 4e68, 4e93, 4eih, 4ey0, 4f59, 4f5a, 4f5b, 4fbn, 4fl2, 4fl3, 4gl9, 4gwf, 4h1o, 4h34, 4je4, 4jeg, 4jgh, 4jmg, 4jmh, 4jps, 4k11, 4k2r, 4k44, 4k45, 4l1b, 4I23, 4I2y, 4lud, 4lue, 4m4z, 4nwf, 4nwg, 4ohd, 4ohe, 4ohh, 4ohi, 4ohl, 4ovu, 4ovv, 4p9v, 4p9z, 4qsy, 4roj, 4tzi, 4u17, 4u1p, 4u5w, 4waf, 4wwq, 4x6s, 4xey, 4xi2, 4xz0, 4xz1, 4y5u, 4y5w, 4ykn, 4z32, 4zop, 5aul, 5bo4, 5cdw, 5d0j, 5d39, 5dc0, 5dc4, 5dc9, 5df6, 5eel, 5eeq, 5eg3, 5ehp, 5ehr, 5fi4, 5i6v, 5ibm, 5ibs, 5itd, 6cmp, 6cmr, 6cms, 6 crg

Table S1. Simulations of complexes created starting from X-ray structures)

The simulated sequence ($2^{\text {nd }}$ column) was modeled from the original sequence ($3^{\text {rd }}$ column) as present in the respective PDB structure (PDB code in $4^{\text {th }}$ column). Substitutions (red characters), were performed with Molecular Operative Environment (MOE), followed by conformational analysis, local energy minimization with side chain repacking. Residues in lowercase were not resolved in the crystallographic structures. Italics indicates residues that were deleted from the original sequence. Underlining indicates residues that were added, with the same procedure.

ID	Sequence	Original Sequence	PDB.chain
GAB1_10	QVE-pY-LDLDLD	gdKQVE-pY-LDLDLD	4QSY.B
GAB1_13	GDKQVE-pY-LDLDLD	gdKQVE-pY-LDLDLD	4QSY.B
IRS1-1172_8	LN-pY-IDLDL	gdKQVE-pY-LDLDLD	4QSY.B
IRS1-1171_9	LN-pY-IDLDLV	gdKQVEpYLDLDLD	4QSY.B
IRS1-1172_11	SLN-pY-IDLDLVK	gdKQVEpYLDLDLD	4QSY.B
IRS1-1172_12	SLN-pY-IDLDLVKD	gdKQVE-pY-LDLDLD	4QSY.B
IRS1-895	PGE-pY-VNIEFGS	spGE-pY-VNIEFgs	1AYB.P
IMHOF9	$\underline{A A L N-p Y-A Q L M F P ~}$	SVL-pY-TAVQPne	1AYA.P
SWEENEY12	VL-pY-MQPLNGRK	SVL-pY-TAVQPne	1AYA.P
IRS1-546	IEE-PY-TEMMPAA	SVL-pY-TAVQPne	1AYA.P
PDGFR-1009	SVL-pY-TAVQPNE	SVL-pY-TAVQPne	1AYA.P
IMHOF5	$\underline{R L N-p Y-A Q L W H R ~}$	rLN-pY-AQLWhr	3TLO.B

Table S2. Solvent Exposure of Phosphopeptide Residues

	ID	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8
PDB	4QSY			K	Q	V	E	pY	L	D	L	D	L	D		
				60	61	14	53		5	62	7	51	7	42		
	1AYB					G	E	pY	V	N	1	E	F			
						-	46		10	56	3	56	24			
	1AYA				S	V	L	pY	T	A	V	Q	P			
					46	6	70		22	27	8	33	35			
	5X94					P	1	pY	A	T	1	D	F	D		
						27	43		0	50	5	27	21	60		
	3TLO					L	N	pY	A	Q	L	W				
						26	46		0	50	5	42				
	5DF6						T	pY	T	E	V	D				
							65		15	63	1	41				
	5X7B					P	I	pY	A	T	I	D				
						44	56		5	52	18	60				
MD	GAB1_10				Q	V	E	pY	L	D	L	D	L	D		
					88	98	85		45	78	7	74	26	72		
	GAB1_13	G	D	K	Q	V	E	pY	L	D	L	D	L	D		
		-	95	87	98	99	69		17	75	14	60	45	83		
	IRS1-1172_8					L	N	pY	1	D	L	D	L			
						23	41		6	46	9	40	21			
	IRS1-1172_9					L	N	pY	1	D	L	D	L	V		
						75	74		22	77	22	60	24	81		
	IRS1-1172_11				S	L	N	pY	1	D	L	D	L	V	K	
					55	64	94		29	75	14	57	68	75	78	
	IRS1-1172_12				S	L	N	pY	I	D	L	D	L	V	K	D
					95	31	76		9	77	14	62	33	72	86	84
	IRS1-895			S	P	G	E	pY	V	N	I	E	F	G	S	
				77	92	-	97		25	78	26	54	36	-	87	
	IMHOF9			A	A	L	N	pY	A	Q	L	M	F	P		
				88	96	77	82		21	80	17	58	38	74		
	SWEENEY12					V	L	pY	M	Q	P	L	N	G	R	K
						24	76		8	80	36	46	93	-	45	90
	IRS1-546				1	E	E	pY	T	E	M	M	P	A	A	
					91	95	91		45	77	8	57	68	20	95	
	PDGFR-1009				S	V	L	pY	T	A	V	Q	P	N	E	
					90	49	90		35	71	12	55	76	37	96	
	IMHOF5				R	L	N	pY	A	Q	L	W	H	R		
					87	79	93		25	79	17	36	80	92		

Percentage of sidechain solvent exposed surface area. Exposure is colored in green when lower that 50% and in red when higher than 50%. For MD simulations an average value is reported. Hydrophobic, anionic and cationic residues are colored in green, red and blue, respectively.

