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ABSTRACT: We present BindFlow, a Python-based software for automated absolute
binding free energy (ABFE) calculations at the free energy perturbation (FEP) or at the
molecular mechanics Poisson−Boltzmann/generalized Born surface area [MM(PB/
GB)SA] level of theory. BindFlow is free, open-source, user-friendly, and easily
customizable, runs on workstations or distributed computing platforms, and provides
extensive documentation and tutorials. BindFlow uses GROMACS as a molecular
dynamics engine and provides built-in support for the small-molecule force fields GAFF,
OpenFF, and Espaloma, as well as support for user-provided custom force fields. We test
BindFlow by computing affinities for 139 receptor−ligand pairs, involving eight different
targets, including six soluble proteins, one membrane protein, and one nonprotein host−
guest system. We find that the agreement of BindFlow predictions with experiments is
overall similar to gold standards in the field. Interestingly, we find that MM(PB/GB)SA
achieves correlations that, for some systems and force fields, approach those obtained with
FEP while requiring only a fraction of the computational cost. This study establishes BindFlow as a validated and accessible tool for
ABFE calculations.

■ INTRODUCTION
During the early stages of drug discovery, a large number of
chemical compounds are evaluated with the aim of finding
potent binders, a process that is both time-consuming and
resource-intensive.1,2 Thus, computational models are widely
used to estimate the binding free energy of small molecules to
biological targets in order to prioritize compounds for follow-
up synthesis and experimental evaluation.3−6 In the 1950s,
methods collectively known as alchemical free energy
perturbation were introduced.7 The term “free energy
perturbation” (FEP) referred originally to a specific class of
alchemical methods8 but has since been more generally applied
to alchemical binding free energy methods, a notion followed
in this study. FEP enabled the estimation of free energy
differences at a fraction of the computational cost compared
with conventional molecular dynamics (MD) simulations.
Nevertheless, FEP remained computationally demanding for
high-throughput studies, rationalizing the development of
computationally more efficient yet more approximate end-
point free energy techniques such as the molecular mechanics
Poisson−Boltzmann/generalized Born surface area [MM(PB/
GB)SA] methods,9 which achieved varying degrees of
success.10 Recent advances in biomolecular simulation
methods6,11 combined with the growth of computational
power have enabled increasingly accurate affinity predic-
tions,6,12 making both FEP and MM(PB/GB)SA calculations
more routine.

Binding free energy estimation has been categorized into
relative (RBFE) and absolute binding free energy (ABFE)
calculations.11 RBFE is typically preferred for ranking
congeneric molecular series13 or for evaluating the effects of
mutations on ligand binding.14 Alchemical RBFE method-
ologies have seen substantial advancements, resulting in
numerous implementations.15−29 These developments have
enabled alchemical RBFE methods to achieve remarkable
accuracy, often with a root mean-squared error (RMSE) of 1−
2 kcal mol−1 relative to experimental values,30 making them
highly effective for drug discovery applications.13−15,31−38

ABFE calculations yield the binding free energy relative to a
standard state of the compound in solution.39 ABFE
calculations are particularly useful for studying highly diverse
molecular sets,4,40−42 for binding pose validation,43,44 or for
multitarget selectivity prediction.45,46 Alchemical ABFE
methods have demonstrated their power in addressing complex
challenges across various projects,4,34,40,41,45−49 and large-scale
comparisons with experimental data have revealed that
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alchemical ABFE predictions are approaching experimental
accuracy.50

However, the preparation, execution, and analysis of ABFE
simulations are tedious, system-dependent processes that
frequently rely on expert intervention. Fully automating the
binding free energy pipeline can mitigate these challenges,
enabling high-throughput calculations for drug discovery
campaigns while improving reproducibility and accessibility.
We suggest that a robust and accessible ABFE workflow should
meet six properties: (i) open-source commitment to ensure
transparency and enable community-driven method and code
development; (ii) efficiency by a flexible and error-tolerant use
of computational resources, in particular in distributed
platforms such as high-performance computing (HPC)
clusters; (iii) reliability, as demonstrated through extensive
benchmarking across sets of diverse ligands and receptors,
including challenging targets; (iv) flexibility for expert users to
test effects of using different force fields or diverse simulation
and deployment parameters; (v) multiligand end-to-end
automation, reducing human error and setup time and
increasing reproducibility; and (vi) accessibility, supported
by comprehensive documentation and tutorials. While several
powerful ABFE workflows have been established, they typically
emphasize only a subset of these properties.

Commercial solutions such as FEP+47 have set high
standards for reliability and automation in the pharmaceutical
industry,47 and other commercial platforms like XFEP17 have
contributed to broader adoption. However, their closed-source
design and licensing costs restrict accessibility for broad
academic use and do not support the methodological
development by the scientific community. In contrast,
academic and open-source tools23,29,51−61 have played a key
role in democratizing ABFE calculations and expanding the
ecosystem of automated free energy workflows. However,
available academic tools are limited to diverse aspects. Certain
tools have been validated using rather small receptor−ligand
data sets or provide limited or even nonexisting documentation
or tutorials. Other tools automate only part of the workflow,

such as the setup of a simulation system and topologies but not
the deployment to distributed computing environments or
data analysis. Certain tools are focused on specific force fields,
use a nonfree MD engine, or support limited options for expert
users for customizing MD parameters or the λ-schedule. A
brief overview of available tools is provided in the Supporting
Discussion. In summary, to the best of our knowledge, no
available software for ABFE calculations commits to all six
properties outlined above.

Here, we aim to close this gap by introducing BindFlow, a
free, user-friendly, open-source software package that provides
a multiligand, end-to-end automated ABFE workflow and
offers fine-grained control over simulation and deployment
parameters (Figure 1a). BindFlow implements two ABFE
methods: (i) the end-point free energy method MM(PB/
GB)SA,9 based on a simulation of the receptor−ligand
complex only (also referred to as the single-trajectory
approach), and (ii) a double-decoupling alchemical free energy
method that uses thermodynamic integration (TI)62 or the
multistate Bennett acceptance ratio (MBAR)63 frameworks for
free energy estimation, following Alibay et al.5 and Ries et al.52

BindFlow uses GROMACS as the MD engine. BindFlow is
highly user-friendly and provides extensive tutorials and
documentation. It natively supports the small-molecule force
fields GAFF, OpenFF, and Espaloma, as well as any
GROMACS-compatible force field. At present, it schedules
tasks on either a local desktop or SLURM-based distributed
computing environments while also providing scope for
incorporating additional HPC platforms in the future. By
scheduling its tasks with Snakemake,64 BindFlow efficiently
uses the available hardware and is resilient against rare
hardware failures or simulation instabilities. For advanced
users, this allows full control over the pipeline and MD settings
and provides various options for further customization.
BindFlow has been forked from ABFE_workf low52 but resolves
its technical restrictions and introduces diverse new function-
alities and numerous options for customization.

Figure 1. (a) Schematic representation of the BindFlow workflow and (b) the systems used in this study for validating ABFE calculations.
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Below, we first present implementation principles and
Application Programming Interface (API) concepts of Bind-
Flow. Next, we validate BindFlow by computing ABFEs for
139 diverse ligands binding to eight different receptors,
including six soluble proteins, one membrane protein, and
one host−guest system (Figure 1b). The calculations include
both FEP and MM(PB/GB)SA methods using three widely
used open-source small-molecule force fields: GAFF-2.11,65

OpenFF-2.0.0,66 and Espaloma-0.3.1,67 referred to as GAFF,
OpenFF, and Espaloma in the following. Statistical uncertain-
ties are rigorously assessed by running at least three
independent replicates for each free energy calculation
workflow.

Overall, our results show that BindFlow delivers a predictive
performance on par with established gold standards in the
field. Strikingly, we observe that for certain targets and force
fields, the computationally efficient MM(PB/GB)SA method
achieves correlations with the experiment that approach those
of the more rigorous FEP calculations�yet at only a fraction
of the computational cost. By fully automating the binding free
energy workflow and minimizing user intervention, BindFlow
enhances not only efficiency but also reproducibility. In
addition, BindFlow scales efficiently across HPC environments,
enabling large simulation campaigns to be executed with high
throughput and resource utilization. Together, these features
make BindFlow a practical, accessible, and reliable platform for
large-scale binding affinity prediction with strong potential for
accelerating modern drug discovery campaigns.

■ THEORY
The theories of FEP and MM(PB/GB)SA have been reviewed
frequently;9,10,12,63,68−70 hence, we provide only a brief
summary of the underlying concepts.
MM(PB/GB)SA

Following the thermodynamic cycle in Figure 2a, MM(PB/
GB)SA estimates the binding free energy ΔGbind as
follows9,10,69,70

= + + +

=

G G G G G

G G G G

( )bind S
R

S
L

bind S
RL

bind v
RL

v
R

v
L

v

v (1)

Here, ΔGS
X denotes the solvation free energy for species X (X =

R, L, or RL), where superscripts R, L, and RL denote the
receptor, ligand, and receptor−ligand complex, respectively.
The solvation free energy for species X is decomposed into
polar and nonpolar terms, ΔGS

X = ΔGPB/GB
X + ΔGSA

X . ΔGPB/GB
X is

obtained by solving the Poisson−Boltzmann (PB) equation or
using the generalized Born (GB) model,10 while ΔGSA

X is
derived from the solvent-accessible surface area (SASA).71

ΔGbinddv
denotes the binding free energy in vacuum,

computed from the free energies Gv
X of the receptor, ligand,

or receptor−ligand complex. The free energies are estimated
via

=G E TSv
X

MM
X X

(2)

where EMM
X is the molecular mechanics (MM) potential energy

of species X comprising bonded and nonbonded terms, as
defined by the MM force field. T is the temperature and SX is
the entropy of species X. By defining the free energy of species
X as

= + +G E G G TSX
MM
X

PB/GB
X

SA
X X

(3)

ΔGbind may be written as the free energy difference between
products and reactants

=G G G Gbind
RL R L

thereby rationalizing by the subscripts of eq 3 the name
MM(PB/GB)SA.9,10,69,70

BindFlow computes the energy contributions to ΔGbind by
averaging over multiple MD simulation frames using the
package gmx_MMPBSA.69 The entropic term may be
estimated using normal-mode analysis, interaction entropy
(IE),72 or a cumulant approximation to the second order of the
exponential average (C2).73−75 These entropy estimations
have been implemented by gmx_MMPBSA69 and may
therefore be used by BindFlow.

BindFlow employs a single-trajectory protocol; that is, all
contributions from the ligand, receptor, or receptor−ligand
complex are computed from MD simulations of the complex.
This approach reduces the computational cost and facilitates

Figure 2. Thermodynamic cycles for (a) MM(PB/GB)SA and (b)
FEP. ΔGS

X denotes the solvation free energy for species X, where
superscripts R, L, and RL denote the receptor, ligand, and receptor−
ligand complex, respectively. ΔGbinddv

is the binding free energy in
vacuum. Superscripts “solv” and “rcp” indicate states with the ligand
in solvent or in the receptor, respectively. Superscripts “dcpl” and
“cpl” indicate decoupling or coupling processes, while “coul” and
“vdw” specify transitions of Coulomb or Lennard-Jones interactions,
respectively. Superscripts “on/off” specify the activation or
deactivation of Boresch restraints (subscript “rest”). The light pink,
gray, and light blue backgrounds represent the implicit solvation
model, vacuum, and explicit water model, respectively.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.5c02026
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c02026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the cancellation of bonded terms in EMM
X . However, the

approach neglects contributions from structural changes of the
ligand or receptor upon binding.10,69

FEP

Alchemical FEP estimates binding free energies by construct-
ing a thermodynamic cycle. Such cycles involve decoupling the
ligand from the solvent (Figure 2b, Steps 1−3) and coupling it
back in the binding site (Figure 2b, Steps 5−7) in the presence
of restraints. The restraints maintain the ligand in the binding
pocket, thereby improving sampling and unambiguously
defining the reference standard state. BindFlow employs
Boresch restraints.39 The free energy for activating Boresch
restraints in the solvent is calculated analytically (Figure 2b,
Steps 3−4) and the free energy for removing the restraints in
the receptor environment is derived numerically (Figure 2b,
Steps 7−8).

Free energy differences ΔG between two states (e.g.,
between states 2 and 1 in Figure 2b) are estimated from
simulations across a series of intermediate alchemical states,
specified by a parameter λ. BindFlow calculates ΔG values
using either TI68 or the MBAR63 method. TI computes the
ΔG values by integrating the mean force along the λ
parameter68

=G
U( )

d1 2
1

2

(4)

where ⟨···⟩λ denotes the ensemble average at a given value λ
and U(λ) is the potential energy. In practice, the integral is
solved numerically by using a finite number of λ points. MBAR
estimates ΔG values using information from all of the
alchemical states. MBAR requires solving the following set of

equations self-consistently to obtain the reduced free energies
f i
63
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Here, M is the number of λ-states, Nj is the number of samples
from λ-state j, and ui(xj,n) is the reduced potential energy of the
nth sample xj,n from the simulation of λ-state j evaluated with
the energy function of λ-state i.

■ IMPLEMENTATION

General Concept of BindFlow

As illustrated in Figure 3, BindFlow streams the entire binding
free energy pipeline, including building of the simulations
systems, definition of force fields and MD parameters, careful
multistep equilibration routines, launching of productions
simulations, and analysis. For FEP calculations, specifically,
production simulations include the definition of Boresch
restraints, as well as the setup, equilibration, and launching of
all λ-windows. The pipeline is organized into tasks with well-
defined dependencies, which are deployed to the computing
environment. The environment may be a desktop computer, a
parallelized high-performance computer, or another distributed
computing environment. Task scheduling is carried out by
Snakemake,64 a robust task manager that has been widely used
for defining complex bioinformatics analyses but has to our
knowledge been less used by the MD community. Snakemake
constructs a direct acyclic graph that specifies the depend-
encies among BindFlow tasks to be executed asynchronously,
thereby optimally using the available hardware. BindFlow uses
GROMACS76 as a molecular dynamics engine.

Figure 3. Task dependency graph for BindFlow. Each rectangle represents a task (or group of tasks), while arrows indicate dependencies between
them. Some tasks are shared between methodologies. Purple boxes correspond to ligand-in-solvent FEP simulations, and green boxes correspond to
receptor−ligand complex FEP simulations. The darkest blue boxes denote MM(PB/GB)SA simulations, which reuse some tasks from the
receptor−ligand complex FEP workflow. All three approaches share the initial system building step (light blue) and converge at the final result
gathering stage to report the binding free energy, ΔGbind.
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BindFlow may compute ΔGbind from a protein PDB file,
together with a set of ligands provided as MOL files. However,
for more complex systems including cofactors or membranes,
additional input files may be provided.

The pipeline is implemented into a single function calculate
within the module runners. The function calculate takes general
parameters such as the protein and ligand structures and,
through the keyword argument global_conf ig, more specific
definitions such as the computational environment or
parameters for simulations analysis. Scheme 1 presents a

minimalistic Python script for running an FEP pipeline in an
HPC environment, while Listing S1 presents a more extended
example for running an MM(PB/GB)SA pipeline on a desktop
computer. Parameters passed with global_conf ig may be
specified within Python (Scheme 1) or, more conveniently,
using JSON or YAML files (Listing S1). While BindFlow
implements default workflows, the user has full control over
equilibration and production settings, GROMACS parameters,
and task deployment (Listing S7). Full documentation is
provided online. Two classes for deployment are provided,
namely, for a desktop computer and for the SLURM queuing
system;77 however, alternative deployment managers may be
added by the user via the abstract base class Scheduler, for
instance, for using cloud computing services. Thus, BindFlow
is highly user-friendly yet allows extensive customization by the
user.

BindFlow has been forked from ABFE_Workflow52 yet has
been largely rewritten with the following aims in mind: options
for extensive customization, efficient resource utilization, built-
in support for several small-molecule force fields, flexibility
with respect to user-provided force fields, comprehensive
documentation, implementation of MM(PB/GB)SA, handling
of cofactors, and support for membrane proteins and
nonprotein receptors. BindFlow is released as an open source
under the GPL-3.0 license.
Input Files and Force Fields
For a typical workflow, the protein structure is provided as a
PDB file and a set of ligands as MOL files, in which the ligand
coordinates are aligned with the protein binding pocket.
Optionally, cofactors are provided as MOL files. Running
membrane protein systems requires additional care, as
described in the online documentation. To enable the use of
custom force fields or to simulate complex receptors, the user
may provide GROMACS topology (TOP) and structure files
(GRO), allowing BindFlow to operate with any GROMACS-
compatible force field or simulation system. Examples for
system component definitions are given in Listings S2, S3, S4,
S5, and S6. More technical details are provided in the online
documentation.

To achieve reliable ABFE results, accurate initial structural
models are crucial with respect to the correct receptor−ligand
arrangement and correct tautomeric, isomeric, and protonation
states.78 While BindFlow does not aim to solve these upstream
challenges, it provides basic tools for structural cleanup, for
instance, for resolving missing atoms or correcting atom
names, via the pdbfixer79 and pdb2gmx76 software tools.

By default, proteins are described with Amber99sb-ildn,80

membranes with SLipids2020,81 cofactors and ligands with
OpenFF-2.0.0,66 and water molecules with the TIP3P model.82

Other protein force fields may be selected from the
GROMACS distribution or from a user-specified path.
Alternative water models can be chosen. The small-molecule
force fields OpenFF,66 GAFF,65 and Espaloma67 are natively
supported by BindFlow via the TOFF83 package. Because the
choice of the force field may influence the accuracy of ABFE
calculations, users are encouraged to consult the literature
when selecting a force field for their system. For example,
Hahn et al.84 recently reviewed small-molecule force fields in
the context of FEP calculations.

■ RESULTS

Validation Set Involving 139 Receptor−Ligand Pairs and
Three Small-Molecule Force Fields
Comprehensive benchmarks are computationally costly, which
explains their limited presence in academic ABFE workflows.
In developing BindFlow, however, we placed particular
emphasis on rigorously validating its FEP and MM(PB/
GB)SA methodologies. To this end, we computed the binding
affinity of 139 receptor−ligand pairs for which high-quality
experimental data are available (Figure 1b). The receptors
included six soluble proteins (cyclophilin D, MCL1, thrombin,
TYK2, PTP1B, P38), the transmembrane GPCR protein A2A,
and the nonprotein host−guest system SAMPL6-OA that has
been used for a binding affinity prediction challenge.86 Affinity
data for P38, PTP1B, TYK2, thrombin, and MCL1 have been
widely utilized for validating RBFE15−18 and ABFE calcu-
lations,17,47,87 allowing us to compare BindFlow results with
the literature (see below). These systems involve various

Scheme 1. Minimal Python code for running an FEP
campaign with BindFlow, as specified by calculation_type.
The protein specifies the path to the protein PDB file, and
the ligands specifies the list of ligand MOL files. The
dictionary global_conf ig specifies options for the computing
environment.
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challenges for binding affinity calculations. (i) Some ligands
binding to PTP1B, thrombin, MCL1, or SAMPL6-OA are
charged (Figures S18, S20, S21, S23). (ii) Ligands binding to
PTP1B or P38 may proceed via slow induced-fit conforma-
tional transitions, suggesting that simulations may not
sufficiency sample the apo state and, thereby, partly miss the
free energy cost for the induced-fit transition.47 (iii) Binding
affinities may be influenced by cofactors: for P38, PTP1B,
TYK2, and thrombin, crystallographic water molecules may
interact with the ligand (Table 1, sixth column). In A2A, a
sodium ion interacts with the ligand, suggesting that imprecise
modeling of a salt bridge by the force field may add
considerable uncertainty. (iv) Among the ten ligands binding
to cyclophilin D (Figure S22), four comprise more than 30
heavy atoms, which could potentially increase sampling
challenges, while (v) eight ligands contain exotic ring
structures, posing challenges for the accurate force field
representation.5,52,53 Thus, our validation sets involve highly
diverse receptor−ligand pairs that cover various common
challenges during binding affinity calculations. All ligands are
shown in Figures S16−S23.

We computed binding affinities for these 139 receptor−
ligand pairs in triplicate using FEP or MM(PB/GB)SA, except
for the cyclophilin D set, where five FEP replicates were used
instead. For all protein targets, we computed binding affinities
using three popular small-molecule force fields: GAFF-2.11,65

OpenFF-2.0.0,66 and Espaloma-0.3.1.67 For the SAMPL6-OA
set, only Espaloma-0.3.1 was used.67 Cyclophilin D was
described with the Amber99sb-ildn force field to allow
comparison with previous studies.5,52,53 Among our MM-
(PB/GB)SA calculations, we compared results from the
Poisson−Boltzmann model with results from the generalized
Born model and, for each solvation model, evaluated the effects
from using either no entropy contribution or using the IE or

C2 entropy contribution. Together, our validation sets
comprise 1,269 FEP and 7,254 MM(PB/GB)SA calculations.

We quantified the agreement between calculated ΔGcalc and
experimental ΔGexp affinities using the Pearson ρ, Kendall τ,
and Spearman rS correlation coefficients. Here, Pearson ρ
quantifies the linear correlation between calculated and
experimental values, accounting for magnitudes rather than
just ranks, although it remains sensitive to outliers. In contrast,
Kendall τ and Spearman rS quantify agreement in ranking and
are far less sensitive to outliers. Whereas Spearman rS
quantifies whether the ligand ranking according to ΔGexp
agrees with the ligand ranking according to ΔGcalc, Kendall τ
quantifies the concordance between pairs of ligands. Upon
comparison of correlation coefficients from different receptors,
it is critical to note that Pearson ρ is highly sensitive to the
dynamic range among the ligands, whereas Kendall τ and
Spearman rS are less sensitive to the dynamic range (Table 1,
seventh column). In this study, we strongly rely on Kendall τ as
a key quality measure for ΔGbind calculations since it has been
shown to be a robust estimator,88 while reporting Pearson ρ
and Spearman rS as complementary measures. In addition to
the correlation coefficients, we computed the RMSE, mean
signed error (MSE), and mean unsigned error (MUE) of
ΔGcalc relative to ΔGexp (see the Supporting Information
methods). To focus on the global correlation between ΔGcalc
and ΔGexp across all receptor−ligand pairs, we furthermore
subtracted from each set its corresponding MSE from ΔGcalc to
yield offset-corrected ΔGcalc

oc values and, respectively, offset-
corrected RMSE (ocRMSE, see the Methods section).
Thereby, ocRMSE ignores systematic offsets between ΔGcalc
and ΔGexp, for instance, owing to insufficient sampling of the
apo state or owing to a systematic bias in receptor−ligand
interactions as modeled by the force field. ocRMSE values may
be compared with results from RBFE calculations since the

Table 1. Simulation Systems Used for Validating BindFlow

System
Number of

Atoms Force Field
Number of
Ligands

Cofactor
(s)

Dynamic Range [kcal
mol−1] References

Protein Ligands

P38 86,376 Amber14sb Espaloma-0.3.1 29 3H2O 3.80 Hahn et al.30

GAFF-2.11
OpenFF-2.0.0

A2A 84,996 Amber14sb Espaloma-0.3.1 10 Na+ 2.69 Deflorian et al.13

GAFF-2.11
OpenFF-2.0.0

PTP1B 74,246 Amber14sb Espaloma-0.3.1 22 4H2O 5.17 Hahn et al.30

GAFF-2.11
OpenFF-2.0.0

TYK2 66,425 Amber14sb Espaloma-0.3.1 13 2H2O 3.47 Hahn et al.30

GAFF-2.11
OpenFF-2.0.0

Thrombin 49,471 Amber14sb Espaloma-0.3.1 23 3H2O 5.87 Hahn et al.30

GAFF-2.11
OpenFF-2.0.0

MCL1 34,829 Amber14sb Espaloma-0.3.1 25 none 4.19 Hahn et al.30

GAFF-2.11
OpenFF-2.0.0

Cyclophilin D 31,861 Amber99sb-ildn Espaloma-0.3.1 10 none 8.49 Alibay et al.,5 Ries et
al.52

GAFF-2.11
OpenFF-2.0.0

SAMPL6-OA 9,204 Espaloma-0.3.1 Espaloma-0.3.1 7 none 3.79 Rizzi et al.,85 Isik et al.86
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latter are blind to such systematic offsets. Uncertainties of the
statistical measures were derived by bootstrapping among the
ligands for each set. Thus, critically, the errors bars for
statistical measures are not only caused by limited sampling
but furthermore stem from the limited number of 7 to 29
ligands per receptor.
Comparison of FEP Results with Experiments

Figure 4 presents correlation plots between calculated affinities
ΔGcalc obtained with GAFF and experimental affinities ΔGexp.
Values are listed either for each of the seven protein targets
individually (small panels) or for all seven targets combined
(large panel). The aggregated plot displays the data after
applying set-specific offset corrections. Insets report Pearson ρ,
Kendall τ, MSE, and RMSE for each data set, as well as
ocRMSE for the aggregated data. Correlation plots obtained
with OpenFF or Espaloma are shown in Figures S2 and S3.
Notably, we removed a single extreme outlier given by the
binding of ligand lig_4 to thrombin (Figure S20) from the
statistical quality measures to avoid a bias from a single
receptor−ligand pair (see Figure 5). Lig_4 comprises a
cationic amidinium moiety (−C−(NH2)2+) forming a salt
bridge to Asp-189 of thrombin (Figure S24). We speculate that
the greatly overestimated affinity of lig_4 may be a

consequence of an overly stable amidinium−carboxylate bridge
modeled by the three force fields.

For most receptors and force fields, the affinities were
overestimated, as shown by mostly negative MSE values
between typically −4 and 0 kcal mol−1 (small panels of Figures
4, S2, and S3; see also Figure 5d and Table S1). Such negative
MSE values have been rationalized by insufficient sampling of
the apo state, thereby partly missing the free energy cost of the
induced-fit conformations transition upon ligand binding.47 An
extreme case was PTP1B with MSE values between −14 and
−10 kcal mol−1, pointing to a major free energy cost for the
induced-fit conformational transition that was not captured
during FEP simulation, in line with the value of approximately
−10 kcal mol−1 reported by Chen et al.47

Statistical quality measures for the agreement with experi-
ments greatly depended on the protein target and the force
field, with RMSE values far below 2 kcal mol−1 for cyclophilin
D with GAFF up to approximately 14 kcal mol−1 for PTP1B
with Espaloma and OpenFF These variations were likewise
reflected by Kendall τ, which spanned 0.82 for cyclophilin D
with Espaloma down to poor τ values for thrombin. Pearson ρ
and MSE values reported similar trends. The wide range of
correlations obtained with different receptors and different
force fields are summarized by Figure 5 and Table S1.

Figure 4. Calculated affinities ΔGcalc (or offset-corrected calculated affinities, ΔGcalc
oc ) versus experimental affinities ΔGexp from FEP with GAFF-

2.11. Results show ΔGcalc for individual set (small panels, see labels for protein name and number of ligands N) and ΔGcalc
oc collected from all sets

(large panel). Insets show Pearson ρ, Kendall τ, MSE, and RMSE (or ocRMSE)�the last two in kcal mol−1�for each data set with their
corresponding 68% confident interval. Colors of dots indicate the absolute deviation between ΔGcalc (or ΔGcalc

oc ) and ΔGexp (color bar). Dark and
light gray diagonal regions indicate 1 or 2 kcal mol−1 deviations, respectively. Dashed lines are linear fits shown to guide the eye. A single outlier
(lig_4, thrombin) has been removed. Error bars show uncertainties obtained via three independent replicates. Figure style has been inspired by ref
87.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.5c02026
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c02026/suppl_file/ct5c02026_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c02026/suppl_file/ct5c02026_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c02026/suppl_file/ct5c02026_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c02026/suppl_file/ct5c02026_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c02026/suppl_file/ct5c02026_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c02026/suppl_file/ct5c02026_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c02026/suppl_file/ct5c02026_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c02026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Each reported binding free energy corresponds to the
average across three independent replicas (five for cyclophilin
D), with uncertainties represented by the standard error of the
mean (SEM). For systems such as MCL1 and P38, SEM values
are small�typically in the range 0.5 to 1 kcal mol−1, as visible
from the small error bars in the small panels of Figure 4. In
contrast, PTP1B shows markedly larger SEMs, reflecting
convergence challenges likely caused by occasional sampling
of apo-like conformations. This highlights both the difficulty of
capturing the induced-fit transition in PTP1B within typical
simulation times and the utility of replica-based SEMs for
revealing such uncertainties.
Comparison of FEP Results from BindFlow with the
Literature

Ross et al.89 evaluated the reproducibility of experimental
RBFE values and reported an overall RMSE (weighted by
number of ligands on each set) of 0.91 kcal mol−1 (95% CI:
[0.83, 1.11]) and a weighted average Kendall τ = 0.71 (95%
CI: [0.65, 0.74]). Thus, upon comparison of ΔGcalc with ΔGexp
in this study, the considerable intrinsic uncertainty of ΔGexp
must be kept in mind. Accordingly, an RMSE of ∼1 kcal mol−1

and a Kendall τ of ∼0.7 between ΔGcalc and ΔGexp would
indicate excellent agreement.

In addition, Ross et al.89 validated FEP+ software for RBFE
calculations in combination with the OPLS4 force field90

against protein−ligand sets different from the ones used here.
Beyond the differences in validation sets, their study employed
RBFEs, whereas we performed ABFEs, which are generally
more challenging. For these reasons, a direct, quantitative
comparison of the RMSE and Kendall τ is not meaningful.
Nevertheless, placing the results side by side helps contextu-
alize the current state of the art in FEP calculations. FEP+
achieved an RMSE of 1.25 (95% CI: [1.17, 1.33]) and a
Kendall τ of 0.51 (95% CI: [0.48, 0.55]). With Espaloma,

GAFF, and OpenFF, we obtained slightly higher ocRMSE
values, which may indicate that the closed-source OPLS4 force
field90 performs somewhat better than the currently freely
available force fields. However, the Kendall τ values obtained
here were even slightly higher than those from FEP+,
suggesting that our ABFE calculations are competitive in
terms of ligand ranking.

Next, we systematically compared ABFE results from
BindFlow with FEP+ by restricting the analysis to ligands
that were present in both the data set of Chen et al.47 and our
BindFlow simulations, resulting in 89 ligands across the P38,
PTP1B, TYK2, and MCL1 sets. Both BindFlow and FEP+
systematically overestimated affinities for PTP1B (Figure S7,
top row). Thus, to enable a quantitative comparison of ABFE
values, we removed PTP1B from the data sets and focused the
comparison on the remaining 67 ligands. FEP+ yielded
systematically stronger binding affinities on these three sets
compared to BindFlow, as quantified by the MSE of −4.29−4.42

−4.16

kcal mol−1 for FEP+, versus −2.74−2.95
−2.53, −1.10−1.28

−0.93, and
−1.79−1.98

−1.62 kcal mol−1 for Espaloma, GAFF, and OpenFF,
respectively (Figure S7, middle row). Keeping the PTP1B set
and removing the constant offset for each set by subtracting
the set-specific MSE from ΔGcalc, FEP+ yielded considerably
lower ocRMSE values compared to BindFlow when used with
any of the three force fields. FEP+ also yielded higher
correlation coefficients (Figure S7, bottom row). Thus, in light
of these data, FEP+ may achieve superior ranking at the cost of
overestimating the absolute binding affinity. We speculate that
the superior ranking by FEP+ is primarily a consequence of
using the OPLS4 force field, although alternative sampling
algorithms may also play a role. Within this subset of ligands,
GAFF achieved better agreement than Espaloma and OpenFF
with experimental data, with ocRMSE = 1.521.40

1.64 kcal mol−1 and
τ = 0.530.48

0.58 (Figure S7, bottom row).

Figure 5. (a) Pearson ρ, (b) Kendall τ, (c) Spearman rS, and (d) deviations between calculated and experimental binding free energies ΔGcalc −
ΔGexp from FEP using Espaloma-0.3.1 (green), GAFF-2.11 (orange), and OpenFF-2.0.0 (blue). Results are shown for seven different data sets
(labels at abscissa). Error bars represent the 68% confident interval obtained from bootstrapping among the ligands from each set. For ΔGcalc −
ΔGexp, dark and light gray horizontal regions indicate 1 or 2 kcal mol−1 deviations, respectively. Box plots present the median (50th percentile) as a
line within the box, and the lower and upper box edges correspond to the first (25th percentile) and third (75th percentile) quartiles, respectively.
Whiskers extend to the smallest and largest data points within the 1.5 × interquartile range (IQR = Q3 − Q1), while outliers beyond this range are
shown as circles.
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Deflorian et al.13 reported RBFE calculations for the A2A
system using FEP+ software. We converted their RBFE values
into ABFEs by referencing the experimental binding affinity of
ligand 4k and correcting for the MSE. From their data, we
obtained ocRMSE = 0.650.47

0.79 kcal mol−1 and τ = 0.780.65
0.90.

Evidently, since all ligands were similarly composed of three
aromatic rings (Figure S17), RBFE required relatively small
perturbations, rationalizing the high τ and exceptionally low
ocRMSE. Although our ABFE calculations involved by far
larger perturbations, we obtained decent agreement (Figure
S10) with GAFF (ocRMSE: 1.641.35

1.87 kcal mol−1, τ = 0.690.52
0.85,

Figure 4) and with OpenFF (ocRMSE: 1.020.80
1.19 kcal mol−1, τ =

0.560.33
0.76, Figure S2). Only with Espaloma, we obtained a rather

poor τ of only 0.16‑0.12
0.44 (Figure S3), which might indicate

inaccurate modeling of the ligand interactions with the Na+
cofactor inside the A2A binding pocket.

The cyclophilin D set was first introduced by Alibay et al.5

for ABFE benchmarking and was recently employed to validate
ABFE_workflow52 and A3FE.53 Excellent agreement with
experiments was found across the three pipelines�ABFE_-
workflow, A3FE, and BindFlow�underscoring that the
cyclophilin D set was the least challenging receptor−ligand
set considered in this study (Figures S8 and 5).

The P38 and TYK2 systems have been used by several
authors for validating binding free energy calculations using
different methodologies.17,47,49,51,87 Figure S9 compares results
from BindFlow with previous studies.17,47,49,51,87 Here, Lin et
al.17 and Chen et al.47 achieved the best ranking of ligands,
though at the cost of overestimating the absolute binding free
energies, as shown by large negative MSE. Among our results,
GAFF achieved comparable ranking at a less negative MSE.

Taken together, the reasonable agreement with previous
data validates BindFlow’s FEP pipeline and demonstrates
competitive agreement with experimental data for a wide range
of ligands and receptors.
Comparison of MM(PB/GB)SA with Experiments

MM(PB/GB)SA provides a computationally efficient alter-
native to FEP. Specifically, the MM(PB/GB)SA pipeline used
here employed only ∼3 ns of MD simulations, corresponding

to a 75-fold lower computing cost compared to the FEP
pipeline used here. However, whereas the MMGBSA
calculation from the MD frames is highly efficient, the
MMPBSA calculation may take considerable additional
computing time owing to the cost of Poisson−Boltzmann
calculations. As expected from previous studies,10 absolute
binding free energies obtained with MMGBSA (Figures 6d,
S11d and S12d) or MMPBSA (Figures S13d, S14d, and S15d)
revealed poor agreement with experimental values. For
instance, MMGBSA without entropy contribution overesti-
mated the absolute binding affinities to protein targets by
approximately 25 to 75 kcal mol−1 (Figure 6d). Even upon
correcting the binding affinity with a target-specific offset,
ocRMSE values remained large (Figures S4−S6).

However, MMGBSA without entropy contribution achieved
overall excellent Pearson, Kendall, and Spearman correlation
coefficients for A2A, cyclophilin D, and SAMPL6-OA while
still reaching good correlation coefficients for PTP1B, TYK2,
and MCL1 (Figures S4−S6, and 6a−c). In contrast,
correlation coefficients for P38 or thrombin were rather
poor. The three force fields GAFF, OpenFF, and Espaloma
achieved similar ranking. Thus, while MMGBSA is not suitable
for obtaining absolute binding free energies (Figure 6d), it may
provide for certain receptors reasonable ranking among ligands
and, thereby, serve as a useful tool for screening large data sets
of potential binders.

Using the Poisson−Boltzmann instead of the generalized
Born solvation model had only moderate effects on the
correlation coefficients (compare Figures S13 with 6),
suggesting that the computationally more efficient generalized
Born model yields a good starting point for computational
studies. Using the IE entropy contribution had only a small
effect on the correlation coefficients (compare Figure S15 with
S12), whereas the C2 entropy contribution decreased the
correlation coefficients (compare Figure S14 with S11). Hence,
in line with previous findings,91 entropy contributions should
be used with care or tested for the receptor of interest because
entropy contributions may deteriorate the ranking by MM-
(PB/GB)SA.

Figure 6. (a) Pearson ρ, (b) Kendall τ, (c) Spearman rS, and (d) deviations between calculated and experimental binding free energies ΔGcalc −
ΔGexp from MMGBSA results without entropy contribution. Presentation style according to Figure 5.
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Ligand Ranking by FEP versus MMGBSA and by Different
Force Fields
Figure 7 summarizes the overall performance of FEP versus
MMGBSA among the three force fields, as collected from all
receptor−ligand pairs, thus including easy receptors such as
cyclophilin D and challenging receptors such as thrombin (see
also Table S1). Here, the matrices in Figure 7b/d visualize
whether one combination of method/force field, such as FEP/
Espaloma, outperforms another combination, such as
MMGBSA/GAFF (see the Methods section for the applied
significance test). The following conclusions are drawn from
the analysis: (i) In terms of ocRMSE, FEP by far outperformed
MMGBSA (Figure 7c/d). These findings suggest that errors
caused by major approximations underlying MMGBSA remain
after correction of ΔGcalc by the MSE. (ii) In terms of ranking
by Kendall τ, FEP overall outperformed MMGBSA (Figure
7a/b). An exception was given by FEP/Espaloma that showed
only insignificant differences relative to those of MMGBSA
(Figure 7b). (iii) For a given method (FEP or MMGBSA), the
three force fields showed no statistically significant differences
(Figure 7b/d), except among the poor ocRMSE by MMGBSA.
Thus, simulations with additional ligands will be required to
test whether the slightly lower τ and slightly larger ocRMSE
obtained with Espaloma are significant or whether they were
caused by the limited set of receptor−ligand pairs considered
in this study.
Computational Costs
BindFlow’s completion time mostly depends on (i) the
aggregated MD simulation time, as defined by the number of

ligands and replicas, simulation times, and number of λ-
windows for FEP or samples for MM(PB/GB)SA, together
with (ii) the performance of the GROMACS MD engine,
which depends on parameters such as hardware architecture,
system size, or integration time step.

By modeling BindFlow execution within a queue-based
scheduling environment similar to SLURM,77,92 we estimated
completion times for common multiligand campaigns. Details
are presented in the Performance Section of the BindFlow
online documentation. For example, for the thrombin system
and the protocol described in this study, a cluster with 200
Nvidia RTX A4000 GPUs, each equipped with 10 CPU cores
of Ryzen Threadripper PRO 3975WX, would complete 580
FEP or 39,965 MMGBSA calculations within 1 week. On
average, MMGBSA completed in a 75-fold shorter time than
FEP.

However, these values may vary considerably upon using
alternative scheduling strategies, for instance, involving more λ-
windows in combination with shorter simulation times per
window, or by adhering to nonlinear instead of equidistant λ-
window spacing.93 In addition, we here used relatively large
water compartments by keeping a distance of 1.5 nm between
the receptor and simulation box surface, suggesting that tuning
the number of water molecules may provide a route for
optimizing the computational cost in future campaigns.

■ DISCUSSION
We introduced BindFlow, a free and user-friendly software
program for ABFE calculations. BindFlow offers fully

Figure 7. Summary of agreement between FEP or MMGBSA calculations and experimental data quantified by (a/b) Kendall τ and (b/c) offset-
corrected root-mean-squared error (ocRMSE) in kcal mol−1, summarized from all receptors. Error bars show 68% confident intervals obtained from
bootstrapping among the ligands from all sets. Pairwise significance difference matrices are for (b) τ and (d) ocRMSE. An arrow indicates a
statistically significant difference pointing to the combination of method/force field with the better statistical metric. Equal symbols indicate an
insignificant difference. The set SAMPL6-OA is excluded to ensure consistence in the analysis across force fields. The extreme outlier lig_4 from
the thrombin set was excluded.
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automated default pipelines for FEP and MM(PB/GB)SA,
requiring minimal user intervention while providing extensive
configuration options for advanced users. Comprehensive
online tutorials and documentation support accessibility. The
software is developed according to best coding practices,
providing transparency, reproducibility, and a solid foundation
for future community-driven development. By scheduling its
tasks with Snakemake, BindFlow optimizes the use of
distributed platforms, is resilient to rare failures of individual
simulations, and enables seamless interruption and continu-
ation of large-scale multiligand campaigns. It supports globular
and membrane proteins as well as nonprotein host−guest
systems, provided that a GROMACS-compatible topology can
be generated. Thereby, BindFlow integrates each of the six
suggested properties for ABFE solutions, as outlined in the
Introduction section, into a single workflow (see also the
Supporting Discussion).

We validated BindFlow by computing ΔGbind values for 139
ligands binding to one of eight different receptors using FEP
together with MBAR or using MM(PB/GB)SA. Overall, we
found that BindFlow yields competitive ΔGbind values
compared to the standards in the field. As expected from
previous studies, the accuracy of ΔGbind values and ligand
ranking greatly depend on the target and the chemical moieties
of the specific ligand.

For the 139 receptor−ligand pairs, in terms of accuracy of
ΔGbind predictions quantified by ocRMSE, FEP by far
outperformed MM(PB/GB)SA. In terms of ligand ranking,
FEP still outperformed MMGBSA significantly; however, for
several receptors studied here, ranking by MMGBSA was
remarkably good. Only for P38 and thrombin did MMGBSA
achieve poor ranking. Thus, our study underscores that
MMGBSA may provide a computationally inexpensive method
for prescreening large sets of ligands prior to validation by the
more expensive FEP. However, future studies will need to
establish whether favorable correlations between MM(PB/
GB)SA and experiments, as observed here, also hold for
noncongeneric sets of ligands.

Beyond the benchmark simulations presented here, Bind-
Flow has recently been applied successfully for combining
∼60,000 MM(PB/GB)SA calculations with Bayesian active
learning;42 for interpreting X-ray crystallographic data from the
antiviral drug tecovirimat binding to the phospholipase F13
from monkeypox virus;44 and as a module to automate the
system preparation phase of a typical MD simulation.94 These
use cases highlight that BindFlow is ready for production use.

BindFlow will be useful to systematically test and improve
small-molecule force fields. For instance, we spotted that the
affinity of lig_4 binding to thrombin was greatly overestimated
by 7 to 13 kcal mol−1, possibly caused by an overly strong
amidinium−aspartate salt bridge (Figure S24). This inter-
pretation is supported by the fact that larger partial charges
used by Espaloma correlated to an even stronger computed
affinity. Since amidinium moieties are quite common in drugs,
these findings point toward options for further force field
refinements.

Future implementations may further enhance the capabilities
of BindFlow. (i) Enhanced sampling techniques, such as
Hamiltonian replica exchange,95−97 may accelerate conver-
gence and, thereby, reduce the computational cost. Enhanced
sampling may, specifically, improve the sampling of the apo
state and lead to smaller MSE values. (ii) The adaptive
allocation of computational resources may focus sampling to λ

windows with increased sampling challenges.53 (iii) Charged
ligand systems (e.g., MCL1, thrombin, and PTP1B) showed
satisfactory accuracy in our validations. However, finite-size
effects in charge-imbalanced systems, primarily due to the use
of particle-mesh Ewald method,98,99 remain a concern.100,101

Charge corrections102,103 such as the coalchemical ion
approach12 represent viable solutions to address this issue.
(iv) Water exchange between the binding site and bulk solvent
represents a slow sampling process that is difficult to capture
during the short MD simulations performed in FEP.12 Monte
Carlo-based water swap methods in a grand canonical
ensemble,104,105 methods based on inhomogeneous fluid
solvation theory,106 or specialized hydration-shell generators
such as SOLVATE78,107 have shown promise in treating the
explicit water. (v) Additional flavors of end-point free energy
methods, as alternative to the single-trajectory MM(PB/
GB)SA approach used here, may be readily implemented, for
instance, involving three-trajectory techniques, quantum
corrections,108 or central limit free energy perturbation.109

Future versions of BindFlow may include such methodologies.

■ CONCLUSIONS
We presented BindFlow, an open-source and user-friendly
pipeline for ABFE calculations that integrates both rigorous
FEP and efficient end-point methods [MM(PB/GB)SA] into a
single unified framework. Validation on 139 receptor−ligand
pairs showed that BindFlow achieves predictive performance
comparable to standards in the field while offering full
automation and extensive customization. FEP achieved more
accurate ΔGbind predictions and ligand ranking than MM(PB/
GB)SA. However, MM(PB/GB)SA provided remarkable
ligand rankings for several systems at a fraction of the
computational cost, highlighting its value for large-scale
computational prescreening campaigns. Thus, we anticipated
that the combination of MM(PB/GB)SA and FEP will be
powerful for balancing efficiency and accuracy in future
BindFlow applications. BindFlow scales efficiently across
HPC environments, enabling high-throughput calculations
with an excellent resource utilization. BindFlow is designed
to serve both nonexpert and expert users: it provides a
straightforward, plug-and-play interface with extensive online
documentations and tutorials that allows users to perform
ABFE calculations without detailed technical knowledge, while
also offering advanced configuration options for expert users
who wish to customize specific aspects of the workflow. By
combining automation, flexibility, accessibility, documentation,
and HPC-oriented scalability, BindFlow lowers the entry
barrier for routine ABFE calculations and provides a platform
for modern drug discovery or for systematically improving
small-molecule force fields.

■ METHODS

Building Simulation Systems
BindFlow version 0.13.post24 was used. Simulations followed largely
the current default settings of BindFlow. The setup protocols are fully
automated yet may be easily adapted by the user via the global_conf ig
keyword, which is a Python dictionary. This dictionary may be
conveniently defined with a YAML file (Listing S7). The simulations
presented here were set up as follows.

The task Build Simulation System (Figure 3) assembles the
simulation systems and defines force fields. Starting structures were
taken from previous studies.5,13,30,52,85,86 Soluble proteins, SAMPL6-
OA, and ligands were placed in an octahedral simulation box, keeping
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a distance of 1.5 nm between the solute and box boundary. The
systems were solvated by explicit water with the GROMACS solvate
module and approximately 150 mM NaCl was added, thereby
neutralizing the system. A minimum distance of 1 nm between ions
and nonsolvent molecules was used. The structure of the membrane
protein A2A was taken from ref 13. BindFlow does not build
simulation systems of membrane proteins. Thus, the A2A system was
built using CHARMM-GUI110 by placing the protein in a simulation
box of a hexagonal prism and by embedding it in a membrane of 172
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids.

Ligand interactions were described with Espaloma-0.3.1,67 GAFF-
2.11,65 or OpenFF-2.0.0.66 Ligand topologies were generated within
BindFlow using the TOFF Python library.83 Cyclophilin D was
described with Amber99sb-ildn,80 as used by previous studies.5,52,53

All other proteins were described with Amber14sb,111 using
OpenMM112 and ParmEd113 for generating force field topologies.
The host molecule octa acid of the SAMPL6-OA system was
described with Espaloma-0.3.1,67 and the topologies were generated
with TOFF.83 Water was modeled with the TIP3P model,82 and ion
parameters were taken from the definitions provided with
Amber99sb-ildn.80

Simulation Parameters
The tasks Setup Complex Equilibration, Setup Ligand Equilibration,
Setup Complex FEP, Setup Ligand FEP, and Setup Complex MM(PB/
GB)SA (Figure 3) define MD parameters and set up directory
structures for the initial equilibration, FEP, or MM(PB/GB)SA
simulations.

All simulations were carried out with GROMACS, version
2022.4.76 The geometry of water acting as a cofactor was constrained
with LINCS,114 while the geometry of all other water molecules was
constrained with SETTLE.115 All other bonds were constrained with
LINCS114 if not stated otherwise. Hydrogen mass repartitioning was
used with a mass repartition factor of 2.5. During production
simulations, a time step of 4 fs was used. Dispersive interactions and
short-range repulsion were modeled by using a Lennard-Jones
potential with a 1 nm cutoff. Electrostatic interactions were calculated
with the particle-mesh Ewald98,99 method, applying a real-space cutoff
of 1 nm.

The temperature was maintained at 298.15 K. For the initial
equilibration of membrane protein−ligand complexes, the temper-
ature was maintained using velocity rescaling (τt = 1 ps). Here, the
protein and Na+ cofactor were coupled to the same thermostat.
During all other simulations, the temperature was maintained by using
Langevin dynamics (τt = 2 ps). The pressure was maintained at 1 bar
for membrane protein−ligand complexes using semi-isotropic
stochastic cell rescaling116 with a time constant of τp = 5 ps during
the initial equilibration. The same barostat was used during the
perturbation phase for membrane protein−ligand complexes, but the
pressure was maintained at 1 atm (1.01325 bar) and τp = 2 ps was
used. For all other simulations, the pressure was controlled at 1 atm
with the isotropic Berendsen barostat during equilibration (τt = 1
ps)117 and the Parrinello−Rahman barostat during production (τp = 2
ps).118

Initial Multistep Equilibration Protocol
After minimizing the energy with the steepest-descent algorithm, each
system was equilibrated with a multistep protocol (see Supporting
Information methods).
FEP Calculations
Following Alibay et al.5 and Ries et al.,52 ΔGbind from FEP was
computed according the thermodynamic cycle shown in Figure 2b.
Coulomb interactions of the ligand in solvent were decoupled over 11
λ points (Figure 2b, transition 1 → 2), followed by decoupling of
Lennard-Jones interactions over 11 λ points (transition 2 → 3). Both,
inter- and intramolecular interactions were decoupled. A 10 ns
equilibrium simulation together with the software MDRestraintsGen-
erator119 was used to obtain the optimal Boresch restraints,39 the free
energy cost for introducing restraints to the ligand in solvent
(transition 3 → 4), and the initial frame for the complex decoupling

simulations. Inter- and intramolecular Lennard-Jones interactions of
the ligand in the receptor were activated over 21 λ points (transition 5
→ 6), followed by 11 λ points for activating the Coulomb interactions
(transition 6 → 7). Finally, Boresch restraints were removed for the
ligand in the receptor over 11 λ points (transition 7 → 8).

For each λ window, the system was energy minimized and
equilibrated with a three-step protocol (see Supporting Information
methods). Each window was simulated for 10 ns using a stochastic
dynamics integrator. During simulations that decouple Lennard-Jones
interactions, a soft-core potential (α = 0.5, σ = 0.3, power = 1) was
used. Free energy differences were computed with MBAR.63 As a
control, free energies were additionally computed using TI.68

BindFlow reports a warning if results from MBAR and TI differ by
more than 0.5 kcal mol−1 as such differences may indicate poor
convergence or simulation instabilities. Alchemlyb-2.0.0 was used for
MBAR and TI evaluations.120

The binding free energy was computed via (Figure 2B)

= + +

+ + +

G G G G

G G G

bind coul
solv,dcpl

vdw
solv,dcpl

rest
solv,on

vdw
rcp,cpl

coul
rcp,cpl

rest
rcp,off

(6)

Here, ΔGcoul
solv,dcpl and ΔGvdw

solv,dcpl denote free energies for decoupling
(dcpl) Coulomb and Lennard-Jones interactions of the ligand in
solvent (solv), respectively. ΔGrest

solv,on denotes the free energy for
turning on Boresch restraints (rest) for the ligand in solvent, which is
computed analytically. Here, ΔGrest

solv,on is defined such that the
decoupled state of the ligand in solvent corresponds to the standard
state with a ligand concentration of 1 mol/L.39,119 ΔGvdw

rcp,cpl and
ΔGcoul

rcp,cpl denote the free energy for activating (coupling, cpl) Lennard-
Jones and Coulomb interactions for the ligand in the receptor (rcp),
respectively. ΔGrest

rcp,off denotes the free energy cost for turning off the
Boresch restraints for the ligand in the receptor.

BindFlow reports the statistical error obtained from MBAR63

together with Gaussian error propagation. However, owing to
autocorrelations, this value greatly underestimates the true uncertainty
of ΔGbind. Thus, we carried out the whole pipeline including setup,
equilibration, and FEP in three (five for Cyclophilin D5) independent
replicates and report the respective SEM as error bars in the
correlation plots.

MM(PB/GB)SA Calculations
The initial multistep equilibration for MM(PB/GB)SA calculation
was carried out as described in the Supporting Information methods.
Following Su et al.,91 MM(PB/GB)SA values were computed from
multiple short simulations, rather than from a single long simulation.
Accordingly, 20 starting frames were taken from a 950 ps equilibrium
simulation, using one frame every 50 ps. From each frame, a 100 ps
simulation was carried out by writing a frame every 5 ps. Here, we
follow Genheden and Ryde,10 who recommended using an output
frequency of 1 to 10 ps. MM(PB/GB)SA values were computed with
the gmx_MMPBSA software,69 yielding 20 samples of the binding
affinity. Cofactors were defined as a part of the receptor for the
MM(PB/GB)SA calculation. For each complex, the pipeline was run
in three independent replicates. Binding affinities reported here were
computed by averaging over 60 samples from the three replicates with
20 samples per replica, and the error was derived as the SEM and
reported as error bars in correlation plots. PB and GB models were
used, each without an entropy contribution or using the IE or C2
entropy contribution. The main text reports results from the GB
model without entropy contribution, while all other results are
provided in the Supporting Information.

■ ASSOCIATED CONTENT
Data Availability Statement

BindFlow is free software published under the GPL-3.0 license.
The code is currently hosted at https://github.com/
ale94mleon/BindFlow. Documentation is available at
https://bindflow.readthedocs.io. Scripts and input files re-
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quired for reproducing our results and analysis are accessible
at: https://github.com/ale94mleon/bindflow-api-paper-si.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.5c02026.

Supporting Information includes the following: support-
ing methods and discussion; example code for an
MM(PB/GB)SA calculation of a membrane system
using BindFlow (Listing S1); examples of optional
dictionaries used to define system components in
BindFlow (Listing S2−S6); list of user-configurable
options passed to global_conf ig (Listing S7); disk space
usage of BindFlow simulations for FEP and MM(PB/
GB)SA workflows, including effects of data compression
(Figure S1); correlation plots for FEP using OpenFF or
Espaloma force fields and for MMGBSA without
entropy contribution using GAFF, OpenFF, or Espalo-
ma force fields (Figures S2−S6); comparison of
BindFlow FEP results with literature data (Figure S7−
S10); statistical metrics for MMGBSA with C2 or IE
contribution (Figures S11 and S12); statistical metrics
for MMPBSA with and without entropy contribution
(Figures S13−S15); chemical structures of ligands with
reported experimental affinities for all validation sets
(Figures S16−S23); salt bridge interaction between
lig_4 and Asp-189 in the thrombin complex (Figure
S24); and summary table of agreement between
calculated and experimental binding free energies across
all validation sets (Table S1) (PDF)
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