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Abstract 

We present Moldrug, a computational tool for accelerating the hit-to-lead phase in structure-based drug design. Mol-
drug explores the chemical space using structural modifications suggested by the CReM library and by optimizing 
an adaptable fitness function with a genetic algorithm. Moldrug is complemented by Moldrug-Dashboard, a cross-
platform and user-friendly graphical interface tailored for the analysis of Moldrug simulations. To illustrate Moldrug, we 
designed new potential inhibitors targeting the main protease (MPro) of SARS-CoV-2 by optimizing a consensus fitness 
function that balances binding affinity, drug-likeness, and synthetic accessibility. The designed molecules exhibited 
high chemical diversity. A subset of the designed molecules were ranked using MM/GBSA and alchemical binding 
free energy calculations, revealing predicted affinities as low as −10 kcalmol

−1 . Moldrug is distributed as a Python 
package under the Apache 2.0 license. It offers pre-configured multi-parameter fitness functions for molecular design, 
while being highly adaptable for integrating functionalities from external software. Documentation and tutorials are 
available at https://​moldr​ug.​rtfd.​io.

Scientific contribution 

Moldrug is a modular and flexible open-source framework for efficient exploration of the chemical space with-
out need of prior training. We demonstrated the applicability of Moldrug by designing new potential inhibitors 
for the MPro of SARS-CoV-2 with high predicted affinity according to alchemical free energy calculations. Moldrug 
follows good coding practice and is accompanied by detailed documentation, making Moldrug an accessible 
and adaptable resource for cheminformatics research.
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Graphical Abstract

Introduction
The hit-to-lead phase in drug design involves optimiz-
ing molecules to enhance their potency towards the 
desired target protein and improve their pharmacoki-
netic properties. Computational methods have proven 
to be invaluable in this regard, providing substantial sup-
port throughout the process [1]. Virtual screening plays 
a crucial role in identifying potential hit molecules and 
facilitating hit-to-lead generation [1]. Nowadays, virtual 
screening campaigns can screen from millions to billions 
of compounds [2]. Unfortunately, many of these hits bear 
structural similarity to known entities, making the crea-
tion of novel drugs conditional on lead optimization. This 
limitation reduces true novelty in drug design; however, 
some works have proposed workaround solutions [3].

A family of methods known as fragment-based drug 
design created high expectations in the early 1990s 
because they proposed a new approach to computational 
drug design without sacrificing chemical novelty. The 
idea was to use fragments of molecules as building blocks 
and link those to generate new molecules. Many software 
implementations follow this philosophy [4–11], with 
LUDI [4, 5] being one of the first. LUDI successfully opti-
mized the potency of inhibitors targeting HIV protease 
and dihydrofolate reductase [5].

However, some challenges persisted. Many of these 
methods relied on the hypothesis that the core or seed 
molecule remains unchanged upon the addition of a 
new fragment, which is not always true [12]. Docking 

scoring functions, used to predict the binding affin-
ity of the molecules, were in the development stages 
at the time. Available databases of fragments were still 
insufficient to explore the vast chemical space. All the 
methods were mainly focused on optimizing only the 
potency of the molecule. Designed molecules could 
request challenging synthetic routes. Lastly, designed 
molecules did not always exhibit drug-like properties.

A new generation of software and methodologies 
concentrated efforts on solving some of the known 
challenges by incorporating better docking algorithms, 
addressing the lack of drug-likeness and synthetic 
accessibility, improving the quality of the database of 
compounds or fragments and generalizing the use of 
evolutionary algorithms for the optimization process

[13–18]. The software AutoGrow [14] uses for the 
first time as a selection operator the scoring function of 
AutoDock [19]. OpenGrowth incorporates the concept 
of biasing the generation of molecules to statistically 
resemble drugs in an input training database to tackle 
the need for chemical realism in the proposed solutions 
[15]. Even attempts to fully enumerate subdomains of 
the “small molecule universe” (the set of all syntheti-
cally feasible organic molecules of ≈ 500Da ) were car-
ried out [17, 18].

The excitement surrounding artificial intelligence/
machine learning (AI/ML) methodologies was also 
reflected in the field of de novo drug design [20–
25]. However, data quality, training times, range of 
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applicability, extrapolation, and achieving drug-likeness 
for the solutions remain topics under investigation.

Over the past four years, the field of de novo design 
has witnessed substantial advancements, marked by the 
introduction of novel software and methodologies in 
both fragment-based optimization and AI/ML strate-
gies [26–38]. Additionally, technical progress, such as the 
integration of parallelization into AutoDock at both CPU 
and GPU levels [39] and the expanded integration capa-
bilities of AutoDock-Vina [40], has significantly contrib-
uted to this forward momentum.

Noteworthy advances have emerged over the past four 
years. LigBuilder V3, introduces capabilities for multi-
biologic-target optimization [29]. MolFinder employs 
an evolutionary algorithm that operates on the SMILES 
(Simplified Molecular-Input Line-Entry System) rep-
resentation of molecules and employs fitness functions 
encompassing various properties like Quantitative Esti-
mation of Drug (qed) likeness and Synthetic Accessibility 
(sa) score [34]. While MolFinder has exhibited promis-
ing results compared to state-of-the-art methodologies, 
its efficacy in designing molecules constrained by a bio-
logical target remains untested. Prentis et  al.  [35] dem-
onstrate that the elitism selection method yields more 
tightly clustered molecules in terms of 2D/3D similarity, 
with more favorable fitness, followed by tournament and 
roulette selection methods. Fragment-based drug design 
methods have been synergistically combined with AI/
ML approaches [31, 36]. Lu et al. introduces SECSE, a de 
novo design open-source software that primarily inte-
grates rule-based molecular generation and structure-
based drug design methods using genetic algorithms, 
along with on-the-fly deep learning training to mitigate 
the computational burden of docking evaluations [37].

During this period, Polishchuk introduced CReM [27, 
28], an elegant and versatile open-source molecular gen-
erator. This method utilizes the concept of interchange-
able fragments. For instance, if two molecules with 
distinct cores share identical peripheral fragments up to 
a predefined number of heavy atoms, then the cores of 
each molecule become interchangeable. This basic con-
cept expands the chemical novelty with a native incor-
poration of chemical realism to the designed molecules. 
Moreover, the adaptable implementation of CReM may 
position it as a reference Python library in the future of 
de novo drug design. With CReM, it is possible to select 
specific local chemical features of the molecule to be 
optimized, rather than treating the entire molecule as a 
single entity, as many past methods have done. During 
the preparation of this manuscript  Minibaeva and Pol-
ishchuk [41] combined CReM with docking algorithms, 
yielding promising results.

Here, we present Moldrug, an efficient and versatile 
open-source chemical space explorer. Moldrug lever-
ages the flexible CReM framework [27, 28] as its struc-
ture generator, expanding upon its functionalities for 
an iterative environment. CReM equips Moldrug with 
a highly adaptable mechanism to traverse the chemi-
cal landscape, offering fine user control over explora-
tion strategies and chemical novelty while maintaining 
chemical realism.

Molecules are guided with an evolutionary algo-
rithm reminiscent of a classical genetic algorithm [42], 
albeit without crossover operations. Moldrug facilitates 
multi-property-oriented optimization through the uti-
lization of Derringer-Suich desirability functions [43], a 
less-explored concept in de novo drug design literature. 
Variables such as sa_score (synthetic accessibility score) 
or qed (Quantitative Estimation of Drug-likeness) are 
no longer static filters during optimization; in Moldrug, 
they actively guide the optimization process.

Moldrug ships with robust fitness functions tailored 
for drug design, capable of performing constrained 
docking, multi-biological-target optimization, and 
other features discussed in detail below. However, Mol-
drug is not confined to predefined evaluation strategies; 
it allows users to seamlessly define custom fitness func-
tions to better suit their specific requirements. This 
flexibility theoretically renders Moldrug suitable for 
applications beyond the scope of drug design.

In this study, we also explored the combination of the 
Moldrug algorithm with molecular dynamics simula-
tions as a post-processing step, focusing on pose sta-
bility prediction, interaction profiles, and alchemical 
binding free energy calculations. This combination, 
referred to as “mouse”, demonstrated significant value 
in refining and validating proposed solutions. The post-
processing steps highlighted the efficiency of Moldrug 
and underscored the importance of molecular dynam-
ics analysis in the final selection of putative drugs for 
subsequent wet lab testing.

Moldrug is implemented in Python and takes the 
form of a modular program, allowing for extensive cus-
tomization and integration into diverse drug discov-
ery pipelines. Its user interface has been meticulously 
designed for simplicity, reducing the learning curve 
for researchers. Moldrug is complemented by Mol-
drug-Dashboard, a cross-platform and user-friendly 
graphical interface tailored for the analysis of Moldrug 
simulations.

Moreover, Moldrug is committed to user-centric 
development. We continuously update its documenta-
tion, augmenting it with tutorials and incorporating new 
features to enhance user experience. Our tutorials are 
designed to be executable either locally or online through 
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platforms like Binder or Google Colab, and the relevant 
links are provided in our online documentation. Moldrug 
is open-source software released under the Apache 2.0 
license, ensuring accessibility and fostering collabora-
tive research. The online documentation is available at: 
https://​moldr​ug.​rtfd.​io.

Implementation
Moldrug is a Python software featuring a modular archi-
tecture showcased in Fig.  1. At its core lies the utils 
module, home to pivotal classes like: Individual, 
Local and GA, and different functions and classes that 
collectively form the backbone of Moldrug’s capabilities. 
The utils module is complemented with a Command 
Line Interface (cli), capabilities to perform constrained 
docking (constraintconf) and four build-in fitness 
functions: Cost, CostOnlyVina, CostMultiRe-
ceptors and CostMultiReceptorsOnlyVina 
(within the fitness module). In addition, Moldrug 
stands out by integrating user-customized fitness func-
tions, enhancing adaptability and user-friendly operation.

The Individual class
An Individual object serves as the primary input for 
any fitness function, whether built-in or user-customized 
(refer to section Fitness Function for details on fitness 
functions). The Individual class encompasses five key 
attributes: 

1.	 mol: Represents the RDKit [44] molecule object.
2.	 idx: Identifies the Individual.
3.	 pdbqt: A pdbqt string representation of the molecule, 

generated through the Meeko [45] Python library. 
This pdbqt string is compatible with AutoDock-Vina 
[46].

4.	 smiles: Denotes the SMILES (Simplified Molecular-
Input Line-Entry System) of the molecule without 
explicit hydrogens. Set as an immutable property, 
smiles serves as hash and ensures equality between 
instances. Two Individual instances are considered to 
be equal (with operation ==) only if they share the 
same smiles property.

5.	 cost: A float number representing the fitness of the 
Individual. This value must be updated during the 
evaluation of the fitness function. Arithmetic opera-
tions between instances of Individual use this attrib-
ute.

Fitness function
Moldrug can theoretically accommodate any fitness 
function, subject to the following constraints:

•	 The fitness function must be a serializable object for 
two key reasons: (i) The GA and Local classes inter-
nally use the Python Multiprocessing module during 
the evaluation phase, where functions need to be 
passed between different processes, which requires 
serialization. (ii) The fitness function is also stored as 
an attribute of the GA and Local classes, and these 
classes can be saved to disk using the pickle or dill 
Python modules, both of which require objects to 
be serializable in order to save and load them. Since 
most Python objects are serializable, this require-
ment only poses minor limitations.
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Fig. 1  Schematic representation of Moldrug’s modules

from moldrug import utils
def my_cost_function(individual: utils.Individual):

# The implementation to get <value>
individual.cost = <value>
# Optional
individual.pdbqt = <pdbqt string of the docked molecule>
return individual

Fig. 2  Fitness function template compatible with GA and Local classes

https://moldrug.rtfd.io/
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•	 The first argument of the fitness function must be 
an Individual object, and it should return the modi-
fied Individual with the updated cost attribute, where 
a lower value indicates a better fit. The structure of a 
fitness function is illustrated in Fig.  2. The user may 
optionally update the pdbqt attribute with a PDBQT 
string of the docked conformation. This attribute is 
used by the function make_sdf of the utils module to 
create an SDF file with the conformations of a list of 
Individual’s.

•	 Since the parallelization is implemented with the 
Multiprocessing Python module that utilizes a 
shared-memory scheme. The fitness function should 
not be excessively computationally expensive and 
should not require excessive use of memory.

In the initial stages of drug design, the primary focus 
is typically on identifying molecules with a robust bind-
ing affinity to the target biomolecule. Subsequent steps 
involve refining the drug-likeness profile. While this con-
ventional approach has demonstrated success, the intri-
cate task of finely adjusting the drug-likeness properties, 
while preserving or enhancing the achieved potency, may 
be challenging.

A drug should simultaneously fulfill several properties. 
For our built-in fitness functions Cost and CostMul-
tiReceptors, we describe the drug with AutoDock-
Vina Score [46] (vina_score), Quantitative Estimation 
of Drug-likeness [47] (qed) and the Synthetic Accessi-
bility Score [48] (sa_score). vina_score accounts 
for the potency of the molecule against the bimolecular 
target; qed is a measure of the drug-likeness and sa_
score estimates ease of synthesis.

Desirability functions
Each property is scaled using Derringer-Suich desir-
ability functions [43]. In brief, the desirability function 
transforms each property to a desirability value di , where 
0 ≤ di ≤ 1 and di = 1 represents the optimal value. Then, 
all di values are combined using a weighted geometric 
mean; where wi is the weight of desirability di:

Moldrug incorporates three desirability functions, acces-
sible within the utils module: LargerTheBest 
(Eq.  2), SmallerTheBest (Eq.  3), and Nominal-
TheBest (Eq.  4). These functions are designed for 
situations where optimization aims for a maximum, a 
minimum, or falls within a specified range for a particu-
lar property, respectively.

(1)D =

(

N
∏

i=1

di
wi

)1/
∑

N

i=1 wi

;where 0 ≤ D ≤ 1;

Where x, l, u, and t correspond to the parameters Value, 
LowerLimit, UpperLimit, and Target, respectively, 
in the code. These parameters are used to define the 
range and thresholds for the desirability functions:

•	 Value (x): the property value being evaluated.
•	 LowerLimit (l): the minimum acceptable value for the 

property.
•	 UpperLimit (u): the maximum acceptable value for 

the property.
•	 Target (t): the optimal value that the property should 

reach or approach.

The parameters r, r1 , and r2 control the steepness of the 
transitions in the desirability functions.

Depending on the properties targeted for optimiza-
tion, users have the flexibility to choose specific desir-
ability functions and fine-tune their contribution to the 
weighted mean by adjusting wi in Eq. 1 and the values of 
r in Eqs. 2 and 3, as well as r1 and r2 in Eq. 4. The relation-
ship between desirabilities and the parameter r is illus-
trated in Fig. S1. The use of desirability functions offers 
high flexibility, giving control over the exploration of the 
chemical space according to specific needs.

It is, however, crucial to acknowledge that with an 
increase in the number of properties incorporated into 
the fitness function through a desirability function, 
the complexity of the optimization may proportionally 
escalate.

Built‑in fitnesss functions
Moldrug’s fitness module includes four pre-imple-
mented fitness functions, each designed for specific sce-
narios. These functions update the cost attribute of the 
provided Individual with a floating-point number, 
with a lower value indicating a better fit.
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The Cost fitness function updates the cost of the 
Individual with 1− D where D is the weighted geo-
metric mean of the desirability values vina_score, 
qed and sa_score (See Eqs. 1, 2, 3 and 4). For certain 
applications, users may focus solely on optimizing the 
molecule’s potency. While Cost can serve this purpose 
by adjusting the desirability functions of qed and sa_
score, the fitness function CostOnlyVina is specifi-
cally designed for this scenario. It updates the cost with 
the vina_score value only.
CostMultiReceptors and CostMultiRe-

ceptorsOnlyVina, generalize the previous fitness 
functions to accommodate multiple receptors. These 
functions enable the incorporation of potency informa-
tion across several receptors; particularity useful when 
the drug should be selected for binding to one protein 
over another. In scenarios involving flexible receptors, 
ensemble docking [49] can be performed using these 
functions. Software like LigBuilder V3 [29] and MolPAL 
[50] also include multi-biological-target capabilities using 
different approaches.

The Moldrug GitHub repository hosts additional fit-
ness function examples in the Contr​ib direc​tory that are 
not included in the main Python distribution but are fully 
accessible and compatible with Moldrug. At the time of 
writing this paper, two projects are available: one utilizes 
MolSkill [51] as a drug-likeness predictor instead of qed, 
while the other trains and employs machine learning 
models for the prediction of specific ADMET properties. 
We envision this directory to host various fitness func-
tions built by and for the community in the future.

The GA (Genetic algorithm) class
GA is the main Moldrug class. It carries out the opti-
mization of the input chemical structure(s). It follows 
the structure of a classical genetic algorithm [42] but 
excludes the crossover operation that proved being inef-
ficient for our application case. The GA class comes with 
various attributes and methods, as detailed in the online 
documentation.
GA is a callable object, implying that the __call__ 

method is implemented. This method initializes the pop-
ulation with a size specified by the attribute popsize, 
based on the attributes _seed_mol and mutate_
crem_kwargs. Figure  3 illustrates the optimization 
flowchart followed by the GA class. Following popula-
tion initialization, individuals undergo evaluation based 
on user-provided fitness functions. The costfunc and 
costfunc_kwargs attributes store the fitness function 
object and its corresponding arguments, respectively. 
As initial molecule(s) defined by _seed_mol, either an 

identified hit molecule or the simple methane molecule 
may be used.

Individuals are then selected for further mutations 
using a roulette wheel selection strategy [42] with con-
stant selection pressure. The probability of choosing an 
individual is calculated based on a Boltzmann distribu-
tion. Where β represents the constant selection pressure:

A large β value increases the likelihood of selecting the 
best-fit individual, while a small β value leads to a more 
equal distribution of probabilities, fostering a more 
exploratory selection process. The β parameter is defined 
as the attribute beta in the GA class. In future versions 
of Moldrug, additional selection strategies such as Rank 
Selection, Tournament Selection, Boltzmann Selection, 
or Stochastic Universal Sampling [52] may be considered. 
However, our current selection strategy has proven to be 
efficient.

Selected individuals are submitted to mutation 
through the CReM [27] Python library. CReM is a frag-
ment-based structure generation that excels in its cus-
tomization and flexibility while exploring the chemical 
space. The parameters for CReM are accessed through 
the mutate_crem_kwargs attribute of the GA class. 
CReM mutations can be conceptualized as an exter-
nal crossover, introducing fragments from a database 
of interchangeable fragments into the current popula-
tion, and eliminating the need for an internal crosso-
ver in our method. CreM databases of interchangeable 

(5)Pi =
e−βcosti

∑popsize
i=1 e−βcosti

Start Seed molecule(s)

Set gen = 0 (gen: generation)

Generate initial population

Evaluate fitness

Selection

Mutation

Evaluate fitness of newly formed individuals

Merge

gen < max

gen + = 1

Best population

Stop

noyes

Fig. 3  Optimization flowchart followed by the GA class

https://github.com/ale94mleon/moldrug/tree/main/Contrib
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fragments can be downloaded at www.​qsar4u.​com or 
built from scratch by the user.

The offspring resulting from the CReM mutations are 
then evaluated based on the fitness function. To main-
tain a constant population size, the previous and off-
spring populations are merged, and individuals with the 
highest cost are discarded.

If the maximum number of generations (attribute max-
iter) is reached, the simulation stops. If not, the selec-
tion, mutation, evaluation and merge steps are repeated.

The GA class can be invoked multiple times. Across dif-
ferent calls, the attributes of the GA class can be modified 
to choose a different search strategy. The GA class main-
tains an internal state through its attributes, so multiple 
invocations of the class can continue from where the 
previous call left off, effectively allowing for a continuous 
simulation rather than resetting each time. This flexibility 
enables for the implementation of different search strate-
gies within the same simulation. Furthermore, the class 
is a serializable object, suggesting that it can be saved to 
disk for future use, currently using the pickle method.

from moldrug import utils, fitness
from rdkit import Chem
# Initialize the class
out = utils.GA(

seed_mol=Chem.MolFromSmiles( 'CC(O)CNC(CC)C'),
maxiter=10,
popsize=30,
pc=0.5,
beta=1,
costfunc=fitness.Cost,
costfunc_kwargs={

'vina_executable':
<path/to/vina/executable/file>,↪→

'receptor_pdbqt_path': <path/to/receptor.pdbqt>,
'boxcenter' : [<center_x>, <center_y>,

<center_z>],↪→
'boxsize': [<size_x>, <size_y>, <size_z>],
'ncores': 4},

crem_db_path = <path/to/cream_fragment.db>,
mutate_crem_kwargs={

'radius': 3,
'min_size': 0,
'max_size': 8,
'min_inc': -5,
'max_inc': 3,
'ncores': 12},

deffnm='first_run')
# Start simulation. First call
out(njobs=3)
# Save on disk
out.pickle('first_run', compress=True)
# Modify some internal attributes
out.deffnm = 'second_run'
out.maxiter = 5
beta=3
out.mutate_crem_kwargs.update({

'min_size': 0,
'max_size': 1,
'min_inc': -1,
'max_inc': 1})

# Continue simulation. Second call
out(njobs=3)
# Save on disk
out.pickle('second_run', compress=True)

first_run:
type: GA
njobs: 3
seed_mol: "CC(O)CNC(CC)C"
maxiter: 10
popsize: 30
beta: 1
pc: 0.5
costfunc: Cost
costfunc_kwargs:

vina_executable:
<path/to/vina/executable/file>↪→

receptor_pdbqt_path:
<path/to/receptor.pdbqt>↪→

boxcenter:
- <center_x>
- <center_y>
- <center_z>

boxsize:
- <size_x>
- <size_y>
- <size_z>

ncores: 4
crem_db_path:

<path/to/cream_fragment.db>↪→
mutate_crem_kwargs:

radius: 3
min_size: 0
max_size: 8
min_inc: -5
max_inc: 3
ncores: 12

deffnm: first_run
second_run:

mutate_crem_kwargs:
radius: 3
min_size: 0
max_size: 1
min_inc: -1
max_inc: 1
ncores: 12

maxiter: 5
beta: 3
deffnm: second_run

Fig. 4  Example of the utilization of the GA class in Moldrug. The example includes initialization, a first run and saving to disk, modification 
of internal attributes, a second run and final saving to disk. Left: Python code snippet, Right: configuration file for the command line interface. Only 
seed_mol, costfunc, costfunc_kwargs and crem_db_path are mandatory parameters during the initialization of the class

https://www.qsar4u.com/pages/crem.php
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To perform a GA optimization in Moldrug, users can 
initialize the GA class with minimal mandatory param-
eters such as seed_mol, costfunc, costfunc_
kwargs, and crem_db_path. For a more advanced 
use case, Fig.  4 illustrates a Python code snippet. The 
example initializes the class, specifying the molecule to 
be optimized (seed_mol) over 10 generations (max-
iter) with a population size of 30 individuals (pop-
size), a proportion of children of 0.5 (pc) and selection 
pressure of 1 (beta). The fitness function Cost is 
employed (costfunc), along with its specified param-
eters (costfunc_kwargs). The path to the CreM 
database (crem_db_path) and parameters for the 
mutate CReM function (mutate_crem_kwargs) are 
set accordingly. A default prefix name is given (deffnm) 
for output files. The class is then called with a paralleli-
zation level of three evaluations per generation (njobs). 
In the subsequent run, lasting for an additional 5 genera-
tions, only atom-per-atom substitution is allowed and the 
selection pressure is increased to 3. The results of each 
run are saved with distinctive names using the pickle 
method. More advanced options and functionalities are 
detailed in the online documentation.

The Local class
Local is an auxiliary class of Moldrug, not designed for 
independent optimization. However, in the later phases 
of drug discovery or lead optimization, this functionality 
proves particularly beneficial. The Local class may be 
considered as a wrapper around the grow_mol function 
of CReM but enhanced with attributes and methods for 
performing evaluations (__call__) of a provided fit-
ness function, saving to disk (pickle), and retrieving 
data (to_dataframe).

Similar to GA, Local is a callable object. The __
call__ method grows the seed molecule specified by 
the attribute _seed_mol with the parameters of the 
attribute grow_crem_kwargs. Figure S2 illustrates 
the simple workflow of the Local class. After the grow-
ing step, a number of offspring are selected (or picked) 
based on the pick parameter of the __call__ method. 
Finally, the selected offsprings are evaluated with the fit-
ness functions provided by the user. The costfunc and 
costfunc_kwargs attributes store the fitness function 
object and its corresponding arguments, respectively. 
The left side of Fig. S3 shows an example of how to use 
the Local class inside a Python code.

Command Line Interface (CLI)
The Moldrug package, primarily designed for usage as a 
Python module, also provides a command line interface 
(CLI) covering most of its standard functionalities. mol-
drug is the main command and requires a positional 

argument-the configuration YAML file. This file outlines 
simulation parameters similarly to using Moldrug as a 
Python module. Custom fitness modules can be incor-
porated by providing the path to the Python file using 
the –f or –fitness flag. Additionally, the –c or –con-
tinue flag allows for the continuation of a simulation. 
Examples of configuration files are presented in Figs.  4 
and S3 (right column), along with their corresponding 
Python code counterparts (left column).

Constrained docking: the constraintconf module
This module was developed as part of a community 
effort, initially introduced by Dudgeon [53]  and later 
improved by Meyers [54] and Walters [55]. Our contri-
butions include the introduction of a new command line 
interface, enhancements in conformer generation for 
scenarios where previous solutions fall short, handling 
of specific exceptions, modification of clashing confor-
mation detection and the incorporation of additional 
documentation.

The approach involves generating new embedded or, if 
the embedding strategy fails, aligned conformations for a 
specified molecule relative to a reference. Subsequently, 
conformations that collide with the protein are removed.

The constraintconf module is integrated into all 
built-in Moldrug fitness functions enabling constrained 
docking. The resultant conformation can be evaluated 
using a docking engine such as AutoDock-Vina [46], 
obviating the conformation exploration and restrict-
ing to evaluation. Built-in Moldrug fitness functions 
support both local optimization and score-only capa-
bilities of AutoDock-Vina through the keyword con-
straint_type, which accepts either “local_only” 
for local optimization or “score_only” for score-only 
evaluation. During local optimization the constrained 
conformation is locally relaxed by AutoDock-Vina while 
score-only return the docking score of the proposed con-
strained conformation without any further optimization.

Constrained docking is powerful in scenarios where 
the preservation of not only the chemical structure of the 
seed molecule (achieved through CReM parameters) but 
also its three-dimensional conformation is crucial. This 
feature is particularly valuable in the advanced stages of 
drug discovery or lead optimization.

Moldrug‑dashboard: an interactive analysis tool
Moldrug-Dashboard is a Streamlit application designed 
for the interactive analysis of Moldrug results. The appli-
cation’s capabilities are made possible through the inte-
gration of various open-source projects such as mols2 
grid [56] and ProLIF [57]. The complete list of dependen-
cies is listed in the Moldrug’s GitHub repository at strea​
mlit/​requi​remen​ts.​txt. Moldrug-Dashboard is accessible 

https://github.com/ale94mleon/moldrug/blob/main/streamlit/requirements.txt
https://github.com/ale94mleon/moldrug/blob/main/streamlit/requirements.txt
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online at https://​moldr​ug-​dashb​oard.​strea​mlit.​app or can 
be run locally using the script moldr​ug-​dashb​oard.​py, 
available in the Moldrug’s GitHub repository. The online 
Moldrug’s documentation provides detailed instructions 
for installation and usage.

To utilize Moldrug-Dashboard, a mandatory file is 
required: a compressed serialized object of either the 
Local or GA classes, or a tuple with an integer as its first 
element and a list of Individual’s as its second ele-
ment. This file, with the extension .pbz2, is automati-
cally generated upon executing the moldrug command. 
Alternatively, it can be generated using the pickle 
method of the Local or GA classes or with the com-
pressed_pickle function from the utils module 
with the keyword compress = True. Additionally, the 

optional inclusion of a PDB file of the protein in the dash-
board is recommended if docking was performed, and 
the pdbqt attribute of the Individual was properly 
updated during evaluation (see section Fitness Function 
for more details about it).

Moldrug-Dashboard facilitates interactive analysis, 
allowing users to dynamically filter results based on 
selected optimization properties. The left sidebar (Fig. 5 
A) features sliders for each property, influencing the 
entire dashboard. The chemical structures table, gener-
ated using mols2grid software [56], is fully interactive. A 
summary table of properties, sortable and downloadable, 
is also accessible (Fig. 5 B).

If a protein is loaded in Moldrug-Dashboard, the 
ProLIF software [57] calculates the protein-ligand 

Fig. 5  Snapshots of Moldrug-Dashboard. Green boxes highlight key features. See the main text for more details. The illustrated example 
corresponds to the free campaign presented in this document

https://moldrug-dashboard.streamlit.app/
https://github.com/ale94mleon/moldrug/blob/main/streamlit/moldrug-dashboard.py
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interaction fingerprint. Two interactive representations, 
either 2D (Fig. 5 C) or 3D (Fig. 5 D), are available for a 
specified solution. A comprehensive table of interaction 
types for all solutions is provided, enabling sorting, filter-
ing, and download functionalities (Fig. 5 E).

To analyze the optimization process, Moldrug-Dash-
board offers a view of the population’s evolution across 
generations (Fig. 5 F). This feature is pivotal in assessing 
the effectiveness of the employed optimization strategy.

Methods
Structure Retrieving and processing
The Moldrug methodology is here presented for its appli-
cability in designing new inhibitors targeting the main 
protease (MPro) of SARS-CoV-2, as crystallized by  Jin 
et  al. [58] in complex with the N3 inhibitor (PDB code: 
6LU7). The protein and ligand were separated. Hydrogen 
atoms were added to the protein (pH = 7) and missing 
atom corrected using the PDB2PQR program [59]. Sub-
sequently, the PDBQT file of the protein was generated 
using the prepare_receptor script from ADFRsuite-1.0 
[60]. The ligand was processed with RDKit [44] and miss-
ing valances were added manually.

Selection of case examples
During the initial stages of drug design, binding informa-
tion is usually available for fragments, often lacking clear 
insights into binding poses. To illustrate Moldrug’s utility 
in this challenging context, we chose the 2-phenylethanol 
fragment of the N3 inhibitor as the seed molecule (see 
Fig. S4). This selected fragment, not extensively detailed 
in the experiment (Fig. S5), introduces ambiguity, simi-
lar to situations in early-stage drug design projects char-
acterized by significant uncertainties in initial system 
knowledge.

Here, we present two Moldrug case studies: free cam-
paign, wherein AutoDock-Vina optimizes the dock-
ing pose without restrictions on the generated putative 
inhibitors, and constrained campaign, employing Mol-
drug’s constraintconf module for docking with 
the selected seed molecule as tridimensional confor-
mation reference and the heavy atoms of the seed mol-
ecule remaining unchanged across all generations in 
terms of both chemical structure and tridimensional 
conformation.

Moldrug parameters
The 3.7.2 version of Moldrug was employed. The dock-
ing box, centered at (−8.5, 16.5, 67.5) Å with dimensions 
23.0 (X), 35.0 (Y), and 33.0 Å (Z), encloses the cavity with 
the N3 inhibitor. Although larger than necessary, this 
size avoids biasing inhibitor design based on N3 binding 
mode. This deliberate box selection aligns with our goal 
to emulate the typical uncertain conditions of early-stage 
drug design projects. The exhaustiveness parameter of 
AutoDock-Vina was set to 9.

The Moldrug optimization process comprised 100 gen-
erations, divided into four stages. Each stage involved a 
population size (popsize) of 100 individuals, a propor-
tion of children (pc) of 0.5, selection pressure (beta) of 
1 and CReM database of interchangeable fragments with 
maximum synthetic accessibility score of 2 [27, 28]. The 
Cost fitness function was used with desirability values 
listed in Table 1.

The optimization stages are shown in Table  2 along 
with the corresponding CReM parameters. The initial 20 
generations focused on mutating only hydrogen atoms by 
fragments with a number of heavy atoms between 1 and 
6 (01_grow). Subsequently, 25 generations involved the 
mutation of hydrogen atoms and up to two heavy atoms 

Table 1  Desirability values used by the Cost fitness function

Property Function LowerLimit UpperLimit Target r w

vina_score SmallerTheBest - −2 −10 1 1

qed LargerTheBest 0.1 - 0.75 1 1

sa_score SmallerTheBest - 7 3 1 1

Table 2  Parameters passed by Moldrug to the CReM mutate_mol function and the number of generations spend on each step

Stage radius min_size max_size min_inc max_inc generations

01_grow 3 0 0 1 6 20

02_allow_grow 3 0 2 −2 4 25

03_pure_mutate 3 1 8 −5 3 40

04_local 3 0 1 −1 1 15
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by fragments with heavy atoms ranging from −2 (deletion 
of heavy atoms in the mutated molecule) to 4 (02_allow_
grow). This is followed by 40 generations where only up 
to 8 heavy atoms were mutated, using fragments with 
heavy atoms between −5 (deletion of heavy atoms in the 
mutated molecule) and 3 (03_pure_mutate). Finally, 15 
generations performed point mutations, replacing, delet-
ing, or maintaining one heavy atom (04_local). These 
sequential stages are inspired by the progression from 
lead generation to lead optimization. In the constrained 
campaign, all heavy atoms of the seed molecule were 
safeguarded against mutation throughout all generations.

Similarity analysis
Molecular fingerprint was calculated with a Morgan fin-
gerprint of radius 2 and 2048 bits as implemented in the 
RDKit Python library [44].

Inter‑ and Intra‑campaign similarities
To compute the pair-wise similarity among the designed 
molecules of each campaign, the Tanimoto similarity 
was computed on the molecular fingerprints. Tanimoto 
similarity ranges from 0 (no similarity) to 1 (identical 
molecules). Histograms of the distribution were cre-
ated with 300 bins, and kernel density estimation (KDE) 
was applied to provide a smoother representation of the 
underlying distribution. This was done using the Seaborn 
Python library [61].

Two types of analysis were conducted: i the intra-cam-
paign similarity analysis, where the similarity among the 
molecules within the same campaign was calculated, and 
ii the inter-campaign similarity analysis, where each mol-
ecule from one campaign was compared to all the mol-
ecules from the other campaign.

The intra-campaign similarity measures how thor-
oughly a single simulation explores the chemical space, 
while the inter-campaign similarity evaluates the explo-
ration of distinct regions of the chemical space when 
different strategies are employed. Together, both analy-
ses provide insights into whether Moldrug is capable of 
designing novel molecules and avoiding being trapped in 
local minima of the chemical space.

Quantification of chemical space coverage
To quantify the chemical space explored in each cam-
paign, we projected the designed molecules onto the 
Enamine-Hit Locator Library (HLL-460), which con-
tains 460,160 diverse and synthesizable compounds. The 
chemical space was constructed based on the molecular 
fingerprints for both the Enamine compounds and the 
molecules designed during the free and constrained Mol-
drug campaigns, including both accepted and rejected 
candidates. We first performed Principal Component 

Analysis (PCA) to reduce the dimensionality of the fin-
gerprint data, keeping the top 50 principal components 
(PCs). Then, the t-distributed Stochastic Neighbor 
Embedding (t-SNE) was applied to these PCs to further 
reduce dimensionality to two components for visualiza-
tion. The percent of covered variance by the 50 first PCs 
was computed and reported. All PCA and t-SNE analyses 
were performed using the scikit-learn Python package 
[62].

Binding affinity calculations by molecular dynamic 
simulations
Molecular mechanic generalized Born surface area (MM/
GBSA) calculations
The molecules from the last population of each 
stage were submitted for MM/GBSA calculations. 
AMBER99SB-ILDN force field was used for protein 
parameters in GROMACS 2021 [63]; ligand parameters 
and partial charges were assigned using the Open Force 
field (v2.1.0) [64] and the AM1-BCC partial charge model 
respectively. The protein-ligand complexes were solvated 
in TIP3P [65] water model in octahedron boxes with 
a minimum distance of 12 Å from the solute to the box 
edge using GROMACS modules. Sodium and chloride 
ions were added to neutralize the systems and achieve a 
concentration of 150 mM. ParmEd version 3.2.0 (https://​
github.​com/​ParmEd/​ParmEd) was used to convert input 
topologies and coordinates between Open Force Field 
and GROMACS file formats. Hydrogen mass reparti-
tioning (HMR) [66, 67] was used to achieve a 4 fs inte-
gration time step for all simulations; hydrogen masses, 
except those of waters, were increased to 3 amu by redis-
tributing the mass from the corresponding linked heavy 
atoms. Hydrogen motions were constrained using LINCS 
[68, 69] algorithm. In all cases, simulation temperature 
was maintained at 298.15 K. A simulation pressure of 1 
atmosphere was maintained using Berendsen barostat 
[70] during equilibration with a time constant of 1 ps, 
followed by the Parrinello-Rahman barostat [71] with a 
time constant of 2 ps for production simulations. A cut-
off of 1  nm was used for short range interactions, and 
long range electrostatics were computed with the parti-
cle-mesh Ewald method [72, 73]. During this equilibra-
tion, protein backbone atoms and non-hydrogen ligand 
atoms were restrained using a 5 kcal/mol/Å

2 force con-
stant. The simulation system was first minimized fol-
lowed by the equilibration and the final frame from the 
equilibrated system was used to simulate 3 replicas of 
50 ns each. The trajectory analysis was performed using 
GROMACS [63] tools and MDAnalysis package [74]. The 
approximate binding affinity, MM/GBSA, was calculated 
by protocol described by Maffucci et al. [75].

https://github.com/ParmEd/ParmEd
https://github.com/ParmEd/ParmEd
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Alchemical Binding free energy calculations
From the top 100 molecules ranked by MM/GBSA, 
duplicates and molecules deemed impractical for relative 
binding free energy (RBFE) calculations were excluded. 
The remaining on each campaign were selected for RBFE 
calculations.

Relative binding free energy (RBFE) calculations
The relative free energy calculations were performed 
using the OpenFE 0.14 package. [76] The calculation 
networks were generated using an automated workflow 
build of the AtomMapper in Kartograf [77], the atom 
mapping scorer build from LOMAP [78], and the net-
work building tool Konnektor [79] using the Starry Sky 
Network. First, all enumerated molecules were featur-
ized with Morgan Fingerprints [80] and scikit-mol [81]. 
Next, the featurized molecules were clustered with the 
HDBSCAN implementation from scikit-learn [62, 82] 
and the provided default parameters. Members of each 
cluster, except the outlier molecules in the “noise”-clus-
ter, were converted into star maps by finding all possi-
ble mappings inside the clusters with Kartograf ’s atom 
mapper allowing a maximal distance of 0.95 Å and dis-
allowing any ring size changes or breaking. The star 
map was created by placing the molecule with the high-
est average LOMAP atom mapping score at the center 
of each cluster. Clusters were concatenated by comput-
ing the bipartite matching for each pair of networks 
and then selecting the two highest scoring atom map-
pings from each pairwise matching. For the concatena-
tion step, the same settings were used for Kartograf as 
before to find all possible mappings for the matching. 
The planned networks were executed utilizing the rela-
tive free energy protocol by OpenFE, which is based on 
the Perses toolkit implementation. [83] For the RFE-
Protocol the parametrization of the ligands was per-
formed with OpenFF 2.1.0 [64] and the protein was 
parametrized with AMBERFF14SB [84]. An integration 
time step of 4 fs was used because of the use of hydro-
gen mass repartitioning (HMR) scheme [66, 67]. The 
phase space of the system was sampled using Langevin 
integration [85] with a Hamiltonian Replica exchange 
approach for the � dimension. [86, 87] For more details 
please refer to [77] Each relative free energy transfor-
mation was attempted up to three times.

Absolute binding free energy (ABFE) calculations. Converting 
RBFE to ABFE
Absolute binding free energy (ABFE) calculations were 
performed for a representative molecule from each 
campaign, enabling the estimation of ABFE for the 
remaining molecules as follows:

Here, �� denotes the relative binding free energy, � 
the absolute binding free energy, and δ the associated 
error. Subscripts i and r refer to the i-th molecule and 
the selected representative molecule for each campaign, 
respectively.

Additionally, ABFE was calculated for the N3 inhibi-
tor from the crystal structure proposed by [88], allowing 
direct comparison.

All ABFE calculations were performed using the ABFE 
workflow described by  Ries et  al. [89], employing the 
same force fields used in the RBFE calculations.

Results and discussion
Performance and coverage of chemical space
Moldrug simulations were conducted on an 
AMDEPYC7662TM 64-Core processor with 2 threads per 
core. The simulation took 7.5 hours for the free campaign 
and 8.0 hours for the constrained campaign, resulting in 
an overall performance close to 13 generations per hour 
across both campaigns. Throughout 100 generations, 
a total of 4956 and 4792 new molecules were generated 
and evaluated for the free and constrained campaigns, 
respectively. The constrained campaign generated only 
164 fewer molecules than the free campaign, suggesting 
that the constraints had minimal impact on the efficiency 
of the molecule generation process. The acceptance rates 
for both campaigns were approximately 10 % (Fig. S16). 
The steady acceptance rate of around 10 % over 100 gen-
erations points to the robustness of the selection criteria 
within the genetic algorithm. This steady state indicates 
that the algorithm has reached a balance between explo-
ration and exploitation, ensuring a consistent influx of 
viable molecule designs.

To quantify the diversity of the designed molecules 
within each campaign, we calculated the pairwise intra-
campaign Tanimoto similarity for all molecules (Fig.  6, 
left panel). The peak of the similarity distributions at 0.15 
indicated that both campaigns achieved high structural 
diversity. To assess whether the two campaigns explored 
distinct regions of chemical space, we calculated the 
pairwise inter-campaign Tanimoto similarity. The peak 
of this distribution also appeared at 0.15, demonstrating 
very low similarity between the campaigns.

The same analysis was applied to the accepted mol-
ecules from the last generation of each campaign (Fig. 6, 
right panel). Both campaigns exhibited a shift towards 
higher Tanimoto similarities and wider distributions, 
suggesting that the molecules within each campaign 
became more similar at the final generation. This trend 

(6)
�Gi = ��Gi +�Gr −��Gr

δ(�Gi) =
√

δ2(��Gi)+ δ2(�Gr)+ δ2(��Gr)
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was more pronounced in the constrained campaign 
(center of the distributions approximately at 0.5), while 
the free campaign maintained greater diversity (center of 
the distributions approximately at 0.3). This behavior was 
expected due to the geometric and chemical restrictions 
imposed in the constrained campaign. These findings 
suggest that the constrained campaign explored the local 
chemical space more intensively than the free campaign 
but still preserving a degree of diversity. Additionally, the 

inter-campaign Tanimoto similarity remained low, indi-
cating that the final population of the two campaigns rep-
resented different regions of chemical space.

To corroborate our previous findings and assess the 
chemical realism of the designed molecules, we pro-
jected all designed molecules (including both accepted 
and rejected ones) from both campaigns onto the on-
demand Enamine-Hit Locator Library (HLL-460), 
which consists of 460,160 diverse and synthesizable 
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Fig. 6  Pairwise similarity distribution among all designed molecules (left) and accepted molecules from the final generation (right) within each 
campaign (intra-campaign similarities) and between the two campaigns (inter-campaign similarities). Tanimoto similarity was calculated using 
the Morgan fingerprint with a radius of 2 and 2048 bits. For clarity, lines represent smoothed histograms, computed using kernel density estimation 
(KDE) as described in the methods section. Tanimoto similarity ranges from 0 (no similarity) to 1 (identical molecules)

Fig. 7  Projection of generated molecules onto the Enamine-Hit Locator Library (HLL-460). The space was constructed based on the Morgan 
fingerprint of radius 2 and 2048 bits as implemented in RDKit for both the Enamine compounds and all generated molecules, 
including both accepted and rejected ones, generated during the free and constrained Moldrug campaigns. After calculating the first 50 principal 
components (PC), which explain 36.7% of the variance, the two main components of the t-distributed stochastic neighbor embedding (t-SNE) were 
derived from these principal components. For clarity, the free and constrained campaigns are shown in the left and right panels, respectively



Page 14 of 22Martínez León et al. Journal of Cheminformatics           (2025) 17:85 

compounds (Fig. 7). This projection also allowed us to 
estimate which region of chemical space was explored. 
We used the two main components of the t-distributed 
Stochastic Neighbor Embedding (t-SNE). In addition, 
the distribution of sa_score and qed was calculated 
for HLL-460 and the molecules of the last generation of 
each campaign.

Both campaigns effectively explored the chemi-
cal space, with the free campaign exhibiting greater 
diversity. The majority of the designed molecules were 
located within the region covered by the HLL-460 
library (Fig.  7), and the distribution of sa_score for 
the final generation in both campaigns (Fig. S8, right 
panel) fell within the range of compounds found in 
HLL-460. These results suggest that the designed mol-
ecules are likely synthesizable, supporting the viability 
of the designs produced by Moldrug.

Notably, uncharted regions of chemical space were 
also explored, indicating that Moldrug can propose 
novel molecules. The overlap of qed distributions 
between the molecules from the final generation of 
both campaigns and the HLL-460 library suggests that 
the achieved novelty should not come at the expense of 
drug-likeness. The qed distribution for the HLL-460 
library skews toward higher values compared to the 
Moldrug molecules. However, it is important to high-
light that the target value for qed during optimization 

was set to 0.75 (Table 1), which explains why the peak 
of the distributions for both free and constrained cam-
paigns is centered near this value.

The two campaigns explored different regions of this 
chemical space with denser sampling observed in the 
region t-SNE1 ∈ [50; 100] . Notably, the constrained simu-
lation, characterized by conserved the heavy atoms of the 
seed molecule, did not lead to a reduced structural diver-
sity of the designed molecules.

In summary, these results indicate that Moldrug 
effectively explored diverse regions of chemical space 
while maintaining computational efficiency, novelty 
and chemical realism on the proposed molecules. The 
high structural diversity observed within and between 
the campaigns and the steady acceptance rates suggests 
that the algorithm successfully balances exploration and 
exploitation.

Evolution of the population
The evolution of the population across generations was 
analyzed to assess the effectiveness of Moldrug’s opti-
mization process in guiding molecular design. Specifi-
cally, we tracked the progress of the three key properties 
included in the desirability function: vina_score, qed, 
and sa_score, along with the consensus score (cost), 
to evaluate how these properties evolved during the 
simulations. Figure 8 illustrates the progression of these 

Fig. 8  Evolution of the population profile across generations for: (A) free and (B) constrained campaigns. Shaded regions indicate the four stages 
followed for the optimization (see the section section Moldrug Parameters). Violin plots were produced with the Seaborn [61] Python library
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Table 3  Comparison of the best-performing molecules from free and constrained campaigns with the seed molecule, N3 inhibitor 
[58], and inhibitors proposed by [90]

a  Chemical structure taken from the PDB structure 6LU7. See Figs. S4 and S6 for more details. b Evaluation of PDB structure without optimization by AutoDock-Vina c 
Evaluation of PDB structure with local optimization by AutoDock-Vina

Campaing/PDB ID Molecule structure vina_score [ kcalmol
−1] qed sa_score

Free

 

 −9.23 0.78 2.38

Constrained

 

 −4.28 0.73 3.10

6LU7 (Seed molecule)

 

 −1.59
b 0.57 1.14

6LU7 (N3a)

 

 −2.95
b(−6.74

c) 0.12 4.29

7AU4

 

 −6.72
c 0.86 3.57

7B2J

 

 −7.31
c 0.82 2.00

7B2U

 

 −7.20
c 0.87 3.07

7B5Z

 

 −7.24
c 0.77 2.33

7B77

 

 −6.42
c 0.72 2.33
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properties across the generations for both the free and 
constrained campaigns.

Designed molecules show high synthesizability
In both free and constrained campaigns, the sa_score 
revealed an initial increase over the first 20 genera-
tions, eventually stabilizing and leading to a final popu-
lation within the range of [2.05; 3.41]; range covered by 
the HLL-460 library (Fig. S8, right panel). The initial 
rise of sa_score reflected the initial growth phase of 
the molecules during the first 20 generations, resulting 
in increasing synthetic complexity. The ability to add or 
delete heavy atoms in subsequent generations prevented 
an escalation of synthetic complexity. This property was 
effectively optimized, considering that the chosen tar-
get value for the fitness function was 3 (see Table 1). The 
best-performing molecules from the free and constrained 
campaigns exhibited sa_score values of 2.38 and 3.10, 
respectively (see Table 3), indicating that these two mol-
ecules are likely synthesizable.

Drug‑likeness is maintained
The mean qed value in the free campaign stabilized 
around 0.7 with decreasing variability across generations, 
eventually converging within the range of [0.57; 0.87]. In 
contrast, the constrained campaign showed greater vari-
ability in qed values, with the final population spanning a 
broader range of [0.40; 0.88].

Although the target qed value was 0.75, the final pop-
ulations from both campaigns overlapped well with the 
qed distribution of the HLL-460 library (Fig. S8, left 
panel), demonstrating that Moldrug is capable of design-
ing drug-like molecules. The best-performing molecules 
from the free and constrained campaigns achieved qed 
values of 0.78 and 0.73, respectively (Table  3). These 
outcomes align with the target qed value of 0.75, dem-
onstrating that Moldrug effectively optimized for drug-
likeness in both campaigns.

Challenges in optimizing binding affinity
For the vina_score, the optimization shifted the ini-
tial population from the range [−5.84;−3.90] kcalmol−1 
to a final population within the range 
[−9.72;−8.53] kcalmol−1 in the free campaign, indicat-
ing potent molecules. In contrast, optimizing the vina_
score proved to be more challenging in the constrained 
campaign. During the initial 20 generations, some mol-
ecules displayed unfavorable binding affinities, resulting 
in a distribution spanning positive numbers. However, 
after generation 20, all such molecules were discarded, 
resulting in a final population with a binding range of 
[−4.58,−3.39] kcalmol−1.

The best-performing molecule in the free campaign 
achieved a vina_score of −9.23 kcalmol−1 , nearing 
the target value of −10 kcalmol−1 . In contrast, the best-
performing molecule in the constrained campaign only 
reached −4.28 kcalmol−1 . This premature convergence 
in the constrained campaign may be addressed by modi-
fying the desirability, employing the local_only con-
strained strategy instead of score_only, or adjusting 
the CReM parameters. However, the fine-tuning of these 
optimizations falls outside the scope of this study.

The best-performing molecule in both campaigns were 
primarily stabilized by hydrophobic and van der Waals 
interactions, with polar interactions being relatively 
underrepresented (Fig. S7 B and D). In the free campaign, 
the protein-ligand interaction network was more favora-
ble as compared to the constrained campaign, in line 
with the higher vina_score.

Further improvements in polar contacts can be 
achieved by running additional Moldrug optimization 
iterations, restricting mutations to the heavy atoms near 
polar residues in the previously designed molecules. 
Moreover, Figures S7 A and C indicate that the binding 
pocket still offers space for molecular growth (see also 
Fig. S6).

The consensus score is optimized
The cost value, which represents the weighted desir-
ability of the three properties subtracted from 1 (with 
0 being optimal), ranged from [0.033; 0.066] in the free 
campaign, indicating successful optimization. In con-
trast, the constrained campaign showed a range of [0.348; 
0.417], suggesting only partial optimization. Despite the 
differences in optimization between the two campaigns, 
both demonstrated steady evolution toward better mol-
ecules. In both cases, all molecules in the last generation 
outperformed any molecule from its corresponded first 
generation in terms of cost (see Fig.  8, upper panel). 
This results suggest the effectiveness of Moldrug in opti-
mizing the provided fitness function and the power of the 
desirability functions for multi-objective optimization.

In this study, the target values for each desirability 
function were intentionally ambitious, while the upper 
and lower limits were more permissive. This balance 
allowed the population to steadily evolve toward better 
molecules, while still accepting some that were not fully 
optimized, thus maintaining diversity during the gen-
eration process and avoiding premature convergence. 
Setting overly restrictive limits or ambitious target val-
ues from the beginning could risk trapping the optimi-
zation process in local minima, particularly if the initial 
population is not well-suited to such demanding condi-
tions. In practice, a stepwise optimization strategy may 
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be more effective: starting with moderate target values 
and broader ranges in the desirability functions, allowing 
the population to explore favorable regions of chemical 
space, and then gradually refining the parameters to fur-
ther improve the properties of the molecules.

Comparison with the literature
The optimization properties were also calculated for the 
N3 inhibitor. Table 3 illustrates that both best-perform-
ing molecules from each campaign outperformed N3 
inhibitor in terms of the calculated properties. However, 
the best-performing molecule from the constrained cam-
paign exhibited a binding affinity that was 2.46 kcalmol−1 
weaker than N3 after local optimization during docking.

Recently, Luttens et  al.  [90] screened a diverse library 
of 235 million virtual compounds against the active site 
of the MPro of SARS-CoV-2, followed by fragment-guided 
optimization of millions of compounds, ultimately iden-
tifying 93 candidates, of which eight were confirmed as 
inhibitor. Here, we calculated the profiles for five of these 
eight inhibitors for which the authors also provided crys-
tal structures (see Table  3 and Fig. S11). The qed and 
sa_score values were comparable to those achieved 
by the best-performing molecules from both the free 
and constrained campaigns, although the qed values for 
the inhibitors proposed by [90] were slightly better, indi-
cating superior drug-likeness properties. However, it is 
important to note that our fixed target value for qed in 
the optimization was set at 0.75.

In terms of docking scores, all 100 molecules from 
the last population of the free campaign had vina_
scores lower than −7.31 kcalmol−1 , matching the 
best docking score achieved (see Table 3) from the five 
inhibitors proposed by  Luttens et  al. [90] and tested 
here. These are encouraging results, as the five com-
pounds were experimentally validated with good out-
comes, suggesting that our designed molecules may 
also prove to be effective inhibitors.

It is also important to highlight that Moldrug did not 
require the evaluation of hundreds of millions of mol-
ecules, as was necessary in  Luttens et  al. [90]. With 
only 9,748 designed molecules (both campaigns), we 
achieved a final population of potential inhibitors com-
parable to those from virtual screening, based on the 
discussed properties, and with low similarity to the five 
inhibitors identified by Luttens et al. [90] that were ana-
lyzed in this study (see Fig. S10) This demonstrates that 
Moldrug is an efficient alternative for exploring chemi-
cal space and optimizing molecular properties.

In a recent study, a 3D deep generative model intro-
duced by Li et al. [33] (DeepLigBuilder) designed novel 
covalent and non-covalent inhibitors targeting the MPro 

of SARS-CoV-2. The best-performing covalent com-
pound (compound 4) exhibited qed = 0.64, sa_score 
= 3.62, and a Smina score of −9.2 kcalmol−1 . Mean-
while, the leading non-covalent compound (compound 
7) displayed qed = 0.56, sa_score = 2.37, and a 
Smina score of −10.7 kcalmol−1.

Among the 100 molecules in the final population 
of our free campaign, 97 surpassed the best covalent 
proposed molecule, while 15 exceeded the non-cova-
lent counterpart based on both qed and sa_score. 
Assessing docking scores can be challenging; our 
study utilized AutoDock-Vina, whereas the reference 
employed Smina (a derivative of AutoDock-Vina) [91]. 
For AutoDock-Vina, a score below −9 kcalmol−1 is 
typically regarded as a threshold for identifying good 
binders. Based on this criterion, among the 97 mol-
ecules outperforming the covalent inhibitor in terms 
of qed and sa_score, 25 had vina_scores below 
−9 kcalmol−1 . Furthermore, 5 of the 15 molecules 
exceeding the non-covalent inhibitor also displayed 
vina_scores lower than −9 kcalmol−1.

Critically, we do not claim that the designed mol-
ecules are superior inhibitors to any of those discussed 
in this section. As the comparison was based only on 
the properties considered here (sa_score, qed and 
vina_score). Experiments instead, are needed to test 
which of the designed molecules are effective inhibitors 
in real-life scenarios. It is important to note that more 
precise fitness functions, designed to better reflect 
experimental outcomes, can be integrated into the opti-
mization process. This would enhance the accuracy and 
reliability of predictions for the designed molecules. 

Ranking moldrug hypothesis by molecular dynamic 
simulations
AutoDock-Vina excels in efficient global conformational 
exploration at relatively low computational cost but is 
not without limitations [46]. The reduced computational 
expense is accompanied by lower accuracy in binding 
free energy estimations (See Fig. S13). Moldrug uses 
AutoDock-Vina as its default docking scheme, based on 
the hypothesis that the AutoDock-Vina scoring func-
tion will, at the very least, facilitate the enrichment of the 
population with good binders.

Prioritization with MM/GBSA calculations
To evaluate our hypothesis, the final populations from 
four key stages (generations 20, 45, 85, and 100) of each 
campaign were subjected to MM/GBSA calculations. 
The top 100 globally ranked molecules on each campaign 
were then selected for alchemical binding free energy 
calculations.
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Figure S12 illustrates the distribution of MM/GBSA 
scores. The mean MM/GBSA scores for both campaigns 
improved in the later generations, reflecting optimization 
progress. However, all generations displayed a broad dis-
tribution of MM/GBSA scores, highlighting significant 
variability within the populations.

Ranking with Alchemical binding free energy calculations
From the top 100 molecules ranked by MM/GBSA, dupli-
cates and molecules unsuitable for relative binding free 
energy (RBFE) calculations were excluded. As a result, 
82 and 88 molecules from the free and constrained cam-
paigns, respectively, were selected for RBFE calculations.

RBFEs were converted to absolute binding free ener-
gies (ABFEs) by performing ABFE calculations on a rep-
resentative molecule from each campaign (Tables S1 and 
S2). Additionally, the ABFE of the N3 inhibitor from the 
crystal structure proposed by Jin et  al. was calculated 
to be −6.22 kcalmol−1 , facilitating a direct comparison 
between the designed molecules and the crystal struc-
ture molecule based on alchemical binding free energy 
calculations.

Figure  9 presents the distribution of ABFE values. Of 
the designed molecules, 29 and 79 from the free and con-
strained campaigns, respectively, achieved better binding 
free energies than the N3 inhibitor (Tables S1 and S2). Of 
these, 10 and 51 were found in the final generation of the 
free and constrained campaigns (Figures S14 and S15). In 
a recent study by Li et al. [92], 25 putative inhibitors of 
the MPro of SARS-CoV-2 were identified using alchemical 
binding free energy calculation, 15 of which were experi-
mentally confirmed. Among these, Dipyridamole [93] 
exhibited the highest experimental binding free energy 
at −10.1 kcalmol−1 . Notably, molecules f-4916, f-4329, 
and f-799 (the first two appearing in the final generation 
of the free campaign) were predicted to have comparable 
binding free energies (Table S1). These results underscore 
Moldrug’s ability to enrich the population with potent 
binders using AutoDock-Vina while simultaneously opti-
mizing sa_score and qed profiles.

Interestingly, while the free campaign produced the 
most potent molecules and a wider distribution of bind-
ing free energies, the constrained campaig exhibited a dis-
tribution skewed towards better binders. This difference 
could be attributed to the the greater diversity retained 
in the final population of the free campaign (Fig. 6, right 
panel), indicating that the optimization, while converged 
in terms of the consensus score (cost), has not yet fully 
converged on a specific chemical structure. By contrast, 
the constrained campaign, due to geometric and chemi-
cal restrictions, explored the local chemical space more 
intensively, allowing the identification of stronger binders 
within that region. This is supported by the shift toward 
higher similarity values observed in the constrained cam-
paign (Fig. 6, right panel).

Despite these promising results, Fig. S13 reveal a weak 
correlation between AutoDock-Vina scores and ABFE 
values, emphasizing the need for more sophisticated 
methods like alchemical binding free energy for accurate 
potency ranking. The constrained campaign, in particu-
lar, showed underestimated vina_scores (Fig.  9-b), 
possibly due to the use of the score_only scheme, 
which may not be optimal for precise docking evalua-
tions, and the high similarity among molecules (Fig.  6, 
right panel), which likely limits AutoDock-Vina to dis-
criminate between the molecules. The local_only 
scheme could yield more accurate results. However, these 
limitations were effectively addressed during molecular 
dynamics simulations, which successfully distinguished 
between molecules.

While increasing ligand size is a straightforward 
approach to enhance potency, it often results in mole-
cules unsuitable for pharmaceutical applications. In our 
simulations, the number of atoms stabilized after the first 
20 generations (Fig. S9, where ligand growth was favored. 
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This stabilization reflects the influence of sa_score 
and qed, which indirectly regulate against unnecessary 
growth, ensuring molecules are optimized to exploit key 
interactions rather than merely increasing in size.

These results highlight the potential of the Moldrug 
approach when combined with free energy calculations. 
This integration improves the ranking of designed mol-
ecules, as demonstrated in previous studies [94–97], 
enhancing the reliability of selecting putative drugs for 
experimental testing while reducing the burden of unnec-
essary evaluations.

Conclusions
We introduced Moldrug, a software and algorithm 
designed to identify putative binders by exploring the 
chemical space. Moldrug explores the chemical space 
with a genetic algorithm, where molecules are generated 
by chemically guided mutations suggested by the CReM 
library and ranked by an adaptable fitness function. Mol-
ecules were, in this study, designed with the aim of find-
ing a reasonable consensus between (i) binding affinity as 
quantified by a AutoDock-Vina docking score, (ii) drug-
likeness quantified by qed, and (iii) synthetic accessibil-
ity quantified by the sa_score. Moldrug may optimize the 
provided fitness function starting from a hit compound 
with a known binding pose, optionally constraining the 
binding pose of the hit and/or a substructure of the mol-
ecule. Without constraints, Moldrug has the maximum 
freedom for designing molecules. If no hit compound is 
available, the optimization can start from any small mol-
ecule, such a methane. Designed molecules, along with 
their binding poses and property profiles, can be interac-
tively explored using Moldr​ug-​Dashb​oard.

Moldrug is a free software published under the Apache 
2.0 license. Moldrug is developed openly on GitHub at 
https://​github.​com/​ale94​mleon/​moldr​ug. Documenta-
tion and tutorials are available at https://​moldr​ug.​rtfd.​io.

We demonstrated the capabilities of Moldrug by 
designing potential inhibitors for the main protease 
(MPro) of SARS-CoV-2. The designed molecules exhibited 
high chemical diversity, as indicated by low Tanimoto 
similarity scores and by comparison with the Enamine 
HLL-460 chemical space.

Binding free energy calculations using MM/GBSA or 
alchemical transformations, as used here, were essential 
for accurate ranking of the designed molecules. We iden-
tified 108 molecules with predicted affinities equal to or 
better than the N3 inhibitor, with a predicted affinity of 
−6.22 kcalmol−1 . These molecules achieved binding free 
energies as low as −10 kcalmol−1.

Moldrug has been designed to be highly adaptable. 
New fitness functions may be implemented and shared 

with the community by adding them to the Contr​ib direc​
tory of the Moldrug repository, thereby enabling the eval-
uation of molecules with free or commercial software. 
For instance, a structure-activity relation (SAR) score 
for a specific target may be added to bias the chemical 
space sampling. Binding pose prediction or scoring may 
be carried out with AI-based tools such as AlphaFold 3 
[98] instead of AutoDock-Vina as used here. Free energy 
calculation techniques such as MM/GBSA may be used 
instead of the docking score to achieve more accurate 
affinity prediction at the price of a higher computational 
cost.

The modularity, flexibility, and open license of Mol-
drug are anticipated to be advantageous for various drug 
design projects, spanning from hit identification to lead 
generation and optimization. However, by modifying the 
database of interchangeable fragments to target specific 
regions of chemical space, combined with the native inte-
gration of user-customized fitness functions, Moldrug 
may provide a versatile framework for molecular and 
material design.
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