Welcome to the Computational Biophysics Group at Saarland University.
We develop methods related to molecular dynamics simulations, with the aim to understand the relationship between structure, dynamics, and function of biological macromolecules.
We have several interesting Bachelor and Master projects available. Find out more.
The function of biological membranes goes far beyond the formation of a mere barrier. Membranes are subject to ongoing structural remodeling, which is controlled by interactions with proteins and by the lipid composition. We develop free energy calculation techniques to understand how membrane composition and interactions with proteins (such as viral fusion proteins) enable functionally important events at membranes including membrane fusion, pore formation, or drug permeation.
Collecting experimental data is often difficult – but the interpretation of the data may be even more challenging, for instance because the information content of the experimental signals is low. We develop methods for combining MD simulations with experimental data to get the best of two worlds, with some focus on small-angle X-ray and neutron scattering data (SAXS/SANS). Our developments involve accurate SAXS/SANS predictions, protein structure and ensemble refinement, studies on the protein hydration shell, and modeling of experiments at X-ray free electron lasers. We share our methods via the web server WAXSiS and GROMACS-SWAXS.
Proteins are not static building blocks but instead carry out their function –and malfunction– by structural transitions (Structure-function-dynamics relationship). We combine MD simulations with experiential data and enhanced-sampling techniques, to observe proteins while they function in atomic detail. Our portfolio comprises studies of molecular motors, protein-RNA/DNA complexes, membrane channels, and enzymes related to cancer progression.
Mpox is a zoonotic disease endemic to Central and West Africa. Since 2022, two human-adapted monkeypox virus (MPXV) strains have caused large outbreaks outside these regions. Tecovirimat is the most widely used drug to treat mpox. It blocks viral egress by targeting the viral phospholipase F13; however, the structural details are unknown, and mutations in the F13 gene can result in resistance against tecovirimat, raising public health concerns. Here we report the structure of an F13 homodimer using X-ray crystallography, both alone (2.1 Å) and in complex with tecovirimat (2.6 Å). Combined with molecular dynamics simulations and dimerization assays, we show that tecovirimat acts as a molecular glue that promotes dimerization of the phospholipase. Tecovirimat resistance mutations identified in clinical MPXV isolates map to the F13 dimer interface and prevent drug-induced dimerization in solution and in cells. These findings explain how tecovirimat works, allow for better monitoring of resistant MPXV strains and pave the way for developing more potent and resilient therapeutics.
The primary function of biological membranes is to enable compartmentalization among cells and organelles. Loss of integrity by the formation of membrane pores would trigger uncontrolled depolarization or influx of toxic compounds, posing a fatal thread to living cells. How the lipid complexity of biological membranes enables mechanical stability against pore formation while simultaneously allowing ongoing membrane remodeling is largely enigmatic. We performed molecular dynamics simulations of eight complex lipid membranes including the plasma membrane and membranes of the organelles ER, Golgi, lysosome, and mitochondrion. To quantify the mechanical stability of these membranes, we computed the free energies for nucleating a transmembrane pore as well as the line tension along the rim of open pores. Our simulations reveal that complex biological membranes are overall remarkably stable, however with the plasma membrane standing out as exceptionally stable, which aligns with its crucial role as a protective layer. We observe that sterol content is the main regulator for biomembrane stability, and that lateral sorting among lipid mixtures influences the energetics of membrane pores. A comparison of 25 model membranes with varying sterol content, tail length, tail saturation, and head group type shows that the pore nucleation free energy is mostly associated with the lipid tilt modulus, whereas the line tension along the pore rim is determined by the lipid intrinsic curvature. Together, our study provides an atomistic and energetic view on the role of lipid complexity on biomembrane stability.
We present Moldrug, a computational tool for accelerating the hit-to-lead phase in structure-based drug design. Moldrug explores the chemical space using structural modifications suggested by the CReM library and by optimizing an adaptable fitness function with a genetic algorithm. Moldrug is complemented by Moldrug-Dashboard, a cross-platform and user-friendly graphical interface tailored for the analysis of Moldrug simulations. To illustrate Moldrug, we designed new potential inhibitors targeting the main protease (MPro) of SARS-CoV-2 by optimizing a consensus fitness function that balances binding affinity, drug-likeness, and synthetic accessibility. The designed molecules exhibited high chemical diversity. A subset of the designed molecules were ranked using MM/GBSA and alchemical binding free energy calculations, revealing predicted affinities as low as −10 kcal mol−1. Moldrug is distributed as a Python package under the Apache 2.0 license. It offers pre-configured multi-parameter fitness functions for molecular design, while being highly adaptable for integrating functionalities from external software. Documentation and tutorials are available at https://moldrug.rtfd.io.
Present and former